APPENDIX: Methodology

From Silos to Systems: Investing in Sustainable Nutrition Science for a Healthy Future www.ucsusa.org/resources/from-silos-to-systems https://doi.org/10.47923/2021.14270

Table of Contents

The Federal RePORTER Database	1
Project Methods	1
TABLE A1. Search Results	6
TABLE A2. Funding Estimates, by Year (Figure 2 data)	. 11
TABLE A3. Federal Recommendations for Sustainable Nutrition Science, 2010–2021	. 12
FIGURE A1. Framework for Sustainable Nutrition Science	. 14
FIGURE A2. PRISMA Flow Diagram for Project Search and Selection	. 15

The Federal RePORTER Database

UCS used the National Institutes of Health (NIH) Federal RePORTER database as the source for the *From Silos to Systems* analysis because it is the single publicly available database that links disparate data sources on scientific awards made by the federal government's 18 primary science agencies *and* transparently provides financial, textual, spatial, and temporal data on those awards. The database is the only source of combined information on projects supported by the federal government in the three primary science domains of interest (agricultural harvest, production, and processing of foods; environmental and climate impacts associated with food production and processing; indicators of nutrition and diet-related disease). The database is designed specifically to describe federal science investments and provide empirical data for science policy.

A limitation is that the database does not represent all federal agencies that may be awarding funding for nutrition research (Fleischhacker et al. 2020). Also, not all agencies report funding consistently from year to year. For this reason, reported results are limited to the years between 2016 and 2019; limited data were available for 2020, and the original search identified no relevant project awards from 2020. In addition, the Federal RePORTER is built to provide access to scientific awards to federal agencies and therefore has limitations in its searching capabilities. Fields and advanced query options are limited, and the search string is restricted to 2,500 characters.

Project Methods

UCS used the Federal RePORTER database to identify federal funding awarded for relevant research projects between 2016 and 2019, as reported by participating federal agencies. Participating federal agencies and years for which complete data have been submitted were obtained from the database are as follows:

US Department of Defense (DOD)

- Combat Casualty Care Research Program, 2010–2016
- Congressionally Directed Medical Research Programs, 2000–2018
- Traumatic Brain Injury Centre of Excellence, formerly DVBIC, 2000–2016

US Department of Education

• Institution of Education Sciences, 2012–2018

US Department of Health and Human Services (HHS)

- Administration for Children and Families, 2013–2019
- Agency for Healthcare Research and Quality, 2008–2019
- Centers for Disease Control and Prevention, 2008–2019
- Center for Neuroscience and Regenerative Medicine, 2008, 2010–2012, 2014–2017
- Food and Drug Administration, 2008–2019
- National Institute on Disability, Independent Living and Rehabilitation, 2000–2018
- National Institutes of Health, 2008–2019

Environmental Protection Agency (EPA), 2000–2017

National Aeronautics and Space Administration (NASA), 2008–2017

National Science Foundation (NSF), 2000–2018

US Department of Agriculture (USDA)

- Agricultural Research Service, 2000–2019
- Forest Service, 2011–2018
- National Institute of Food and Agriculture, 2008–2016

US Department of Veterans Affairs (VA), 2009–2019

Notably, this list excludes agencies such as the USDA Economic Research Service, which conducts economic research on policy-relevant issues in food, agriculture, and natural resources with an FY 21 budget of \$62 million, as well as potential DOD research efforts to identify environmentally sustainable options for combat rations. The latter was named as a topic of interest in the 2016–2021 National Nutrition Research Roadmap. According to the National Science Foundation Survey of Federal Funds for Research and Development (Table 15: Federal Obligations for Research, by Agency and Performer: FY 2019), 82 agencies across 15 departments had federal obligations for research in FY 2019.

Framework for Project Selection

The Federal RePORTER database was used to identify relevant scientific project awards from federal agencies between 2016 and 2019. To identify relevant projects in the database, the scope of interest for each of three key domains of sustainable nutrition science was defined as follows:

• Food production includes projects incorporating the harvest, production, or processing of animal products (e.g., beef, pork, poultry), crops (e.g., grains, fruits, vegetables, legumes), and

wild-caught and farm-raised seafood. All included projects address food intended for human consumption.

- Climate and environment includes projects addressing potential environmental and climate impacts of food production, including waste; loss of biodiversity; heat-trapping emissions; degradation of air, soil, and water; and energy, land, and water use. This domain also includes the potential agricultural impacts of extreme weather (e.g., droughts, floods, extreme heat) that is worsening with climate change.
- Nutrition includes projects addressing human nutrition, including food safety, food security, and diet quality and associated health conditions (e.g., cardiovascular disease, diabetes). This domain does not include health outcomes resulting from environmental exposures, such as farmworker exposure to pesticides or severe weather. The review did not consider drinking water as a food item.

Based on our research framework for sustainable nutrition science (FIGURE A1), which depicts relationships between food production, sustainability, human diets, and human health, the nutrition domain included food safety. However, a safe food supply does not necessarily imply, and can even conflict with, healthy diets and environmentally sustainable food production practices. For example, from a foodborne-illness perspective (health consequences), shelf-stable foods that are highly processed and low in nutritional value might be considered safet than more nutritious perishable foods, while novel approaches or technologies used to improve food safety could result in increased energy use, water use, or food waste (environmental consequences).

Although most funding reported in Federal RePORTER is dedicated to research, funding is also reported for programs, interventions, and educational opportunities (e.g., curricula, conferences, fellowships). We considered these projects within the realm of sustainable nutrition science and included them in the results. Evidence-based programming and educational materials and events contribute to the field of sustainable nutrition science by providing opportunities for fostering knowledge and innovation through learning and cross-disciplinary collaboration.

Search String Development

We developed the search terms used to identify relevant projects in Federal RePORTER through an iterative process based on the three domains of sustainable nutrition science, informed by two recent reviews of relevant topics: Sparling et al. (2021) and Reinhardt et al. (2020). A set of search strings were then tested in Federal RePORTER through an iterative process: a search string was used to search the database, and potential new terms were identified based on the project terms affiliated with the search results, which are terms (e.g., "healthy diet," "food safety," "urban agriculture") assigned to each project by the project leader and available through Federal RePORTER. The effects of adding each potential new term on the overall search results were then tested one by one. For example, a new term "water quality" would be isolated by adding "water quality" to the search string and removing all other terms from the same domain (*climate and environment*). The search would then be run with "water quality" and all search terms from the remaining domains (*food production; nutrition*). If the resulting searches produced new relevant results, the search term was added to the search string. If new results were not relevant to the identified domains based on a review of a sample of 20 project titles and abstracts, the search term was not added. In these cases, potential search terms were identified with similar meaning and greater specificity, with further testing and isolating terms through the process described above.

Search strings were entered using the "advanced" function for all possible fields (project title, project terms, and project abstract). Subprojects were excluded from the search, as we were interested in identifying total funding levels awarded to projects. Truncation (using the asterisk "*" symbol to truncate the end of a search term, allowing the search engine to return variations on the original word; for example, using the search term "diet*" to return terms such as "diet," "dietary," or "dietitian") functioned only with single-word search terms; truncation was not used in search terms containing multiple words, such as "health disparity." Plurals of all search terms (multiple-word search terms).

Search String and Search Entry Details

Years: 2016, 2017, 2018, 2019, 2020

Date of search: June 27, 2021

Filters: Exclude subprojects

Search results: 1,068

https://federalreporter.nih.gov/projects/search/?searchId=1eedb234c25045dd91e95240504bf7f6&search Mode=Advanced&resultType=projects&filters=

Search string: ("agricultural crop" or "agricultural crops" or "agricultural product" or "agricultural products" or "agricultural production" or "agricultural system" or "agricultural systems" or agroeco* or agroforestry or agronomy or aquaculture or "animal husbandry" or "animal production" or "beef production" or "cattle production" or "crop production" or farm* or fisher* or "food crop" or "food crops" or "food processing" or "food production" or "food system" or "food systems" or horticultur* or livestock or "local food" or "local foods" or meatpacking or "meat packing" or "poultry production" or "regional foods" or "ruminant production" or "specialty crop" or "specialty crops" or "sustainable agriculture" or "swine production" or "urban agriculture")

AND (diet* or "food insecurity" or "food purchase" or "food purchases" or "food preference" or "food preference" or "food quality" or "food safety" or "food security" or "food supply" or "good diet" or "good nutrition" or "healthy diet" or "health food" or "health foods" or "healthy eating" or "healthy food" or "healthy foods" or macronutrient* or malnutrition or "Mediterranean diet" or micronutrient* or "nutrient density" or nutrition or nutritional or nutritious or undernutrition or vegan or vegetarian or "Western diet" OR BMI or "body mass index" or "body weight" or cancer or cardiovascular or death or diabetes or disease or endocrine or gastrointestinal or gut or "health status" or healthy or "health disparity" or "health disparities" or "nealth equity" or "heart disease" or "hypertension" or illness or illnesses or "immune" or "insulin resistance" or metabol* or microbiome or morbidity or mortality or myocardial or obesity or obese or overweight or "quality-adjusted life year" or stroke or unhealthy)

AND ("air quality" or "air pollution" or "algal bloom" or "biodiversity" or "carbon footprint" or climate or "deforestation" or drought or "ecological footprint" or "ecological system" or ecology or ecosystem* or "energy use" or "environmental footprint" or "environmental impact" or flood* "food loss" or "food losses" or "food waste" or "greenhouse effect" or "greenhouse gas" or "greenhouse gases" or "land use"

or "pollution" or "soil erosion" or "soil health" or "soil quality" or sustainability or sustainable or "water pollution" or "water quality" or "water use")

Inclusion and Exclusion Criteria

The initial search yielded 1,068 results (FIGURE A2). Three reviewers with expertise relevant to the core domains (nutrition, food production, and climate and environment) reviewed these for inclusion. Two reviewers independently reviewed subsets of 20 projects, one set at a time, until full agreement was reached on a complete set of 20. After each review period, conflicts were resolved through discussion among all three reviewers and by clarifying the criteria for inclusion and exclusion. This process was repeated three times with a total of 60 project results. One reviewer reviewed the remainder of the projects (1,008 projects); a second reviewer reviewed the final list of included projects (59 projects) to confirm relevance.

Included projects had to meet all of three primary criteria:

- The project explicitly included food production, harvesting, or processing within its scope of work.
- The project included an aspect of nutrition (as described above) within its scope of work.
- The project included an aspect of environmental or climate impacts within its scope of work.

To assess whether these areas were within the scope of work of any project, the abstracts were closely reviewed. Project titles or terms were referenced only to provide greater clarity if the meaning or application of any terms in the abstract was unclear.

Projects were excluded when the abstracts mentioned topics only as introduction or to provide background or context for the research. For example, projects were excluded if they addressed agriculture broadly, without direct implications for food production, or if they addressed nutrition and health only indirectly (e.g., the abstract framed the research as contributing to food security, but the scope of work did not explicitly include assessments of, or direct work on, food security).

TABLE A1. Search ResultsIncluded search results: 59Unique projects: 53

The search yielded 59 distinct results, each accompanied by a specified amount of funding granted during a specified fiscal year, and 53 unique projects. These two numbers differ because in some cases, the same research project was granted funding across multiple years or was granted funding multiple times during the same year, each of which would have been considered a separate search result.

Agency	Project Title	Fiscal Year	Project Number	Recipient	FY Total Cost
ARS	Adding Value to Plant-Based Waste Materials Through Development of Novel, Healthy Ingredients and Functional Foods	2017	ARS-0428789- PROJ	US Agricultural Research Service	\$1,344,016
ARS	Adding Value to Plant-Based Waste Materials Through Development of Novel, Healthy Ingredients and Functional Foods	2018	ARS-0428789- PROJ	US Agricultural Research Service	\$1,344,016
ARS	Adding Value to Plant-Based Waste Materials Through Development of Novel, Healthy Ingredients and Functional Foods	2019	ARS-0428789- PROJ		\$1,344,016
ARS	Detection and Fate of Chemical and Biological Residues in Food and Environmental Systems	2019	ARS-0430408- PROJ		\$2,485,692
NIFA	120 Committed Beginning Farmers and Ranchers	2016	2016-70017-25345	Arkansas Land and Community Development Corp.	\$481,080
NIFA	Authentic Plant Pollinator Landscape Research for Educators (Appl-Red)	2016	2017-68010-25963	Pennsylvania State University, University Park	\$144,141
NIFA	Breeding Common Bean (Phaseolus Vulgaris L.) for Resistance to Abiotic and Biotic Stresses, Sustainable Production, and Enhanced Nutritional Value	2016	1007384	NY Agricultural Experiment Station	
NIFA	CIOA 2- Carrot Improvement for Organic Agriculture with Added Grower and Consumer Value	2016	2016-51300-25721	US Agricultural Research Service	\$1,999,979
NIFA	Cracking Kyphosids: Developing Culture of High-Value Herbivores for Sustainable Seafood	2016	2016-33610-25456	Kampachi Farms LLC	\$99,740
NIFA	Determining Effects of Nitrogen Fixing Plants on Nutrient Density and Productivity in Agroforesty and Polyculture Systems	2016	1010123	University of the District of Columbia	

NIFA	Developing an Eastern Broccoli Industry Through Cultivar Development, Economically and Environmentally Sustainable Production and Delivery	2016	2016-51181-25402	Cornell University, Ithaca	\$2,019,142
NIFA	Economics of the Food Sector: Consumption, Production, Trade and Marketing	2016	1010309	Iowa State University	
NIFA	Educating from the Ground Up: Promoting Integrated, Experiential Learning for Resilient Food Systems at Miami University	2016	2017-70001-25988	Miami University, Oxford	\$150,000
NIFA	Evaluation of the Prevalence and Persistence of Shiga Toxin-Producing E. Coli (STEC) On Organic Mixed Crop-Livestock Farms That Integrate Sheep Grazing Within Vegetable Fields	2016	1009007	University of California, Davis	
NIFA	Exploring Variation in Fish Life Histories, Population Dynamics and Community Structure in Aquatic Ecosystems	2016	1007769	North Carolina State University	
NIFA	Genomic Tools, Genetic Resources, and Outreach to Expand Commercial U.S. Hazelnut Production	2016	2016-51181-25412	Oregon State University	\$3,112,410
NIFA	Improving Aquaculture`s Value Through Enhanced Nutrient Management	2016	2016-70007-25758	Auburn University at Auburn	\$ 326,250
NIFA	Improving Sustainable Agriculture Education at The University of Puerto Rico Utuado Campus	2016	2016-38422-25546	University of Puerto Rico	\$250,000
NIFA	Integrated Strategies to Mitigate Environmental Stresses in Vegetable Crops	2016	1008386	Texas A&M University	
NIFA	Island Fresh Student Enterprises, Southeast Island School District	2016	2016-38414-25876	Southeast Island School District	\$45,471
NIFA	Multifunctional Agroforestry as a Sustainable Food Production Option in Illinois	2016	1007823	University of Illinois	
NIFA	Multi-Regional Risk Analysis of Farm Manure Use: Balancing Soil Health and Food Safety for Organic Fresh Produce Production	2016	2016-51300-25724	University of California, Davis	\$1,999,848
NIFA	Organic Crop and Forage Rotations for Dairy Production Systems	2016	1006998	University of Minnesota	
NIFA	Preserving Choctaw Culture by Growing Hope	2016	2016-33800-25594	Choctaw Nation of Oklahoma	\$399,864
NIFA	Rebuilding Local Food Systems in Farmworker Communities Project	2016	2016-33800-25589	Farmworker Association of Florida, Inc.	\$500,000

NIFA	Smart Cities and Connected Communities: A Workshop Bridging Rural, Peri-Urban and Urban Sustainability	2016	2016-38831-25863	University of the District of Columbia	\$25,000
NIFA	Sources of Methionine for Organically- Fed Poultry	2016	1008091	University of California, Davis	
NIFA	Strengthening US Agriculture with Multidisciplinary International Undergraduate Research and Extension Experiences	2016	2017-67032-26014	University of Tennessee	\$281,236
NIFA	Understanding the Ecology of Shellfish and Their Pathogens to Improve Shellfish Management and Production	2016	1009201	Rutgers, The State University of NJ New Brunswick	
NIFA	Winnebago Community Food System Planning Project	2016	2016-33800-25583	Ho-Chunk Community Development Corporation	\$34,019
NIH	18th International Conference on Harmful Algae	2018	1R13ES029388-01	Woods Hole Oceanographic Institution	\$8,000
NIH	Greater Caribbean Center for Ciguatera Research	2018	1P01ES028949-01	Florida Gulf Coast University	\$493,091
NIH	Greater Caribbean Center for Ciguatera Research	2019	5P01ES028949-02	Florida Gulf Coast University	\$471,042
NIH	Impact of El Nino on Environmental Mercury and Human Exposure	2016	1R21ES026960-01	Duke University	\$159,500
NIH	Impact of El Nino on Environmental Mercury and Human Exposure	2017	5R21ES026960-02	Duke University	\$183,833
NIH	Natural Sources and Microbial Transformation of Marine Halogenated Pollutants	2018	1R01ES030316-01	University of California, San Diego	\$125,550
NIH	Natural Sources and Microbial Transformation of Marine Halogenated Pollutants	2019	5R01ES030316-02	University of California, San Diego	\$125,550
NSF	Belmont Forum Collaborative Research Food-Water-Energy Nexus: The Moveable Nexus: Design-Led Urban Food, Water and Energy Management Innovation in New Boundary Conditions of Change	2018	1832214	University of Michigan at Ann Arbor	\$76,139
NSF	Career: Mapping Pathways to Food Security and Sustainable Development	2018	1750621	University of California, Davis	\$433,988
NSF	Careers in Food, Energy, and the Environment—An Interdisciplinary Approach	2016	1643833	Michigan State University	\$999,983
NSF	CNH-L: Interactive Dynamics of Reef Fisheries and Human Health	2018	1826668	Harvard University	\$1,359,998

NSF	CNH-L: The Influence of Conflicting Policies and Supply-Chain Pressures on Farmers' Decisions and Tradeoffs with Respect to Biodiversity, Profitability, and Sustainability	2018	1824871	University of California, Berkeley	\$1,301,737
NSF	CNH-S: Socio-Economic Factors, Land and Water Quality, and the Dynamics Between Rural and Urban Zones of Food Production and Consumption.	2018	1824949	North Carolina Agricultural and Technical State University	\$749,989
NSF	EAGER: FEWSTERN: US-China Food-Energy-Water Systems Transdisciplinary Environmental Research Network	2017	1739474	University of Tennessee	\$150,000
NSF	Greater Caribbean Center for Ciguatera Research	2018	1841811	Florida Gulf Coast University	\$739,638
NSF	Hazards SEES: Understanding Cross- scale Interactions of Trade and Food Policy to Improve Resilience to Drought Risk	2018	1832393	Clark University	\$1,563,153
NSF	INFEWS/T1: Intensification in the World's Largest Agricultural Frontier: Integrating Food Production, Water Use, Energy Demand, and Environmental Integrity in a Changing Climate	2017	1739724	Woods Hole Research Center, Inc.	\$828,428
NSF	INFEWS/T1: Linking Current and Future Hydrologic Change to Hydropower, Human Nutrition, and Livelihoods in the Lower Mekong Basin	2017	1740042	Arizona State University, Tempe Campus	\$1,331,133
NSF	International Workshop on the Nexus of Food, Energy, Water and Soil	2016	1649510	University of Tennessee	\$20,000
NSF	NRT-INFEWS: Integrated Urban Solutions for Food, Energy, and Water Management	2017	1735325	University of California, Los Angeles	\$3,000,000
NSF	Planning IUCRC at Georgia Institute of Technology: Center for Engineering and Manufacturing Technologies Advancing Food Safety and Security (CAFSS)	2018	1822117	Georgia Tech Applied Research Corporation	\$15,000
NSF	PPSR: Workshop on Citizen Science in Agrifood Systems: Exploring the Synergy Between Science and Counter- Expertise	2017	1743138	University of Hawaii at Manoa	\$32,929
NSF	RII Track-2 FEC: Sustainable Socio- Economic, Ecological, and Technological Scenarios for Achieving Global Climate Stabilization Through Negative CO2 Emission Policies	2016	1632810	Montana State University, Bozeman	\$6,000,000
NSF	SBIR Phase I: Modular Ozonation Technology for Improved Quality and Reduced Spoilage from Farm to Retail	2016	1622071	Surfplasma, Inc.	\$224,999

NSF	SCC-RCN: Developing an Informational Infrastructure for	2017	1737573	University of California, Davis	\$500,000
	Building Smart Regional Foodsheds			Camorina, Davis	
NSF	Smart Cities and Connected Communities: A Workshop Bridging Rural, Peri-Urban and Urban Sustainability	2017	1712678	University of the District of Columbia	\$25,000
NSF	The Effects of Climate and Population Density on Agricultural Production	2018	1749059	University of Utah	\$215,894
NSF	WSC-Category 2 Collaborative: Impacts of Agricultural Decision Making and Adaptive Management on Food Security	2018	1801251	University of California, Santa Barbara	\$628,777
NSF	WSC-Category 2 Collaborative: Impacts of Agricultural Decision Making and Adaptive Management on Food Security	2018	1830752	University of Arizona	\$980,887
TOTAL	~				\$41,130,158

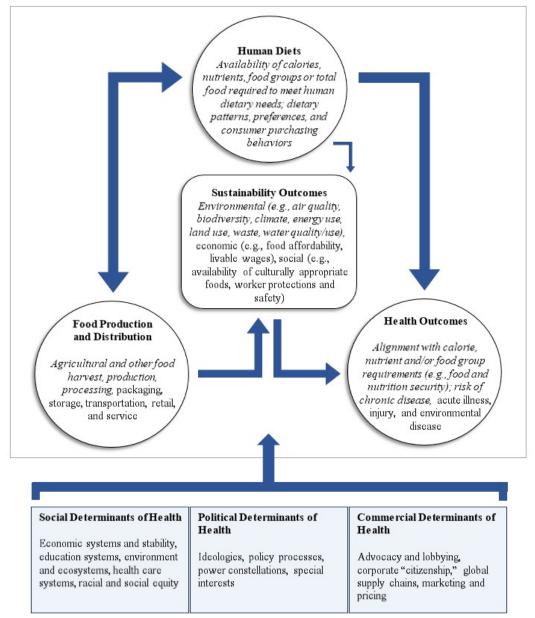
TABLE A2. Funding Estimates, by Year (Figure 2 data)

Federal Investments in All Research, Nutrition Research, and Sustainable Nutrition Science, FY 2016–2019 (millions USD)

	2016	2017	2018	2019	Total	Average
All federal research	\$67,105	\$69,871	\$74,588	\$81,188	\$292,752	\$73,188
Research obligations for ICHNR agency/department	\$48,081	\$50,056	\$52,903	\$58,226	\$209,265	\$52,316
All funding reported in Federal RePORTER	\$38,846	\$38,232	\$41,044	\$37,295	\$155,417	\$38,854
Nutrition research				\$1,900		\$1,900
Sustainable nutrition science (reported)	\$19.3	\$7.4	\$10	\$4.4	\$41.1	\$10.3
Sustainable nutrition science (projected)	N/A	\$20.1	\$21.5	\$23.3	\$84.2	\$21.1
Sustainable nutrition science (estimated)	N/A	\$13.8	\$15.8	\$13.9	\$62.8	\$15.7

Total federal research funding and research funding at Interagency Committee on Human Nutrition Research (ICHNR) agencies and departments are based on basic and applied research obligations for fiscal years 2016–2019. Federal nutrition research budget based on Fleischhacker et al. (2020) estimates. Sustainable nutrition science funding (reported) is based on Federal RePORTER data and may be an underestimate due to inconsistent reporting to Federal RePORTER by agencies. Sustainable nutrition science funding (projected) is based on 2016 sustainable nutrition science funding (reported) with an annual increase consistent with increases across all federal research funding. These values are likely overestimates: Fleischhacker et al. (2020) demonstrated that nutrition research funding has not increased at the pace of all federal research. Sustainable nutrition science funding (estimated) is the midpoint of reported and projected values.

SOURCES: NCES (2021); NIH (2021); FLEISCHHACKER ET AL. (2020).

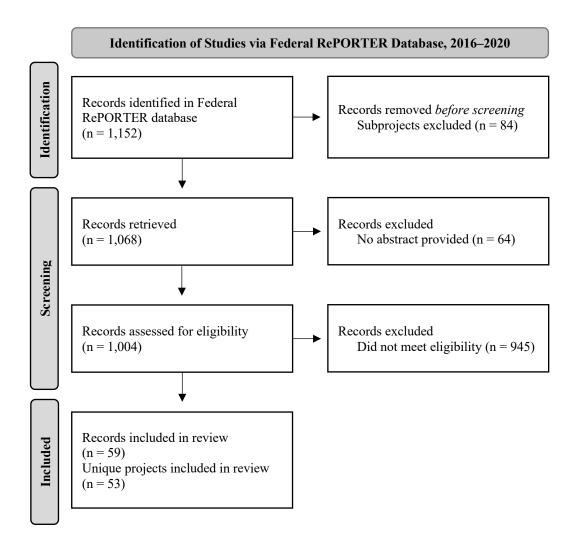

TABLE A3. Federal Recommendations for Sustainable Nutrition Science, 2010–2021

Since 2010, more than a dozen federal reports have included recommendations to advance research and education at the intersection of nutrition, food production, and climate and environment.

Year	Institution	Publication	Summary of Relevant Recommendations
2010	National Research Council	<u>Toward Sustainable</u> <u>Agricultural Systems</u> <u>in the 21st Century:</u> <u>Consensus Study</u> <u>Report</u>	To pursue systemic changes in farming systems, research and development has to address multiple dimensions of sustainability, including productivity and environmental, economic, and social sustainability.
2012	President's Council of Advisors on Science and Technology	2012 Report to the President on Agricultural Preparedness and the Agriculture Research Enterprise	Public investors in agricultural research at the federal, state, and local levels should organize research and development agendas around seven key challenges: managing new pests, pathogens, and invasive plants; increasing the efficiency of water use; reducing the environmental footprint of agriculture; growing food in a changing climate; managing the production of bioenergy; producing safe and nutritious food; and assisting with global food security and maintaining abundant yields.
2014	Institute of Medicine	<u>Sustainable Diets:</u> <u>Food for Healthy</u> <u>People and a Healthy</u> <u>Planet: Workshop</u> <u>Summary</u>	Conduct more interdisciplinary and transdisciplinary systems research encompassing multiple dimensions of sustainability and resiliency, including the social costs of food systems; linkages between soil quality and human health; role of animal agriculture in sustainable diets and ecosystems; food system scale (e.g., local, regional) and market concentration; effects of geography, seasonality, storage, and processing on food quality and environmental outcomes; and consumer behavior change strategies.
2015	Institute of Medicine	<u>A Framework for</u> <u>Assessment Effects of</u> <u>the Food System</u>	Congress and federal agencies should fund and support food systems data collection and continue efforts to share data and develop public- private mechanisms for collaboration. Scientists in academia, the private sector, and government agencies should be trained in all aspects of complex systems approaches—including systems research design, data collection, and analytical methodologies—and the use of models.
2015	2015 Dietary Guidelines Advisory Committee	Scientific Report of the 2015 Dietary Guidelines Advisory Committee	Develop and test communication strategies to help motivate people of all ages to consume increasingly sustainable diets; develop and test systems to ensure that sustainable diets are affordable and available to all populations; develop more in-depth analysis of US dietary patterns and enhanced environmental sustainability with different animal production regimens; develop updated analysis of environmental sustainability of dietary patterns with respect to fish consumption, including nutrient profiles and production regimens.
2016	Interagency Committee on Human Nutrition Research	<u>National Nutrition</u> <u>Research Roadmap,</u> 2016-2021	Identify effective approaches to enhance the environmental sustainability of healthy eating patterns through interdisciplinary research, focusing on such topics as: biodiversity and energy, land and water use associated with healthy diets; promotion and maintenance of dietary diversity; consumer acceptance and economic viability of environmental policies and practices; consumer, institutional, and retailer practices that could reduce food waste; impacts of local food production and comparisons across production systems; and impacts on agricultural production and food distribution of a population-wide transition to a healthy diet.
2017	National Academies of Science,	<u>Redesigning the</u> <u>Process for</u> <u>Establishing the</u> <u>Dietary Guidelines</u>	Adding complex systems approaches to current analytical approaches used in the <i>Dietary Guidelines for Americans</i> process can advance the understanding of complex interrelated factors at play in both population and individual health. Establishing and modeling the

een diet and health can e and identify n. s a sustainable diet for est measured in onomic impact of n; and provide policy into nutrition policy. by 2030 include ral systems; increasing g the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
n. s a sustainable diet for est measured in onomic impact of n; and provide policy into nutrition policy. by 2030 include ral systems; increasing the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
s a sustainable diet for est measured in ponomic impact of n; and provide policy into nutrition policy. by 2030 include ral systems; increasing the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
est measured in phonomic impact of a; and provide policy <u>a into nutrition policy</u> . by 2030 include ral systems; increasing the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
onomic impact of h; and provide policy into nutrition policy. by 2030 include ral systems; increasing the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
n; and provide policy into nutrition policy. by 2030 include ral systems; increasing the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
into nutrition policy. by 2030 include ral systems; increasing the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
by 2030 include ral systems; increasing the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
ral systems; increasing g the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
the resiliency of and extreme sing nutrient use crops; reducing soil proving animal
and extreme sing nutrient use crops; reducing soil proving animal
sing nutrient use crops; reducing soil proving animal
crops; reducing soil proving animal
proving animal
ns; early detection of
pathogens; and
chain.
each that is relevant to
erm maintenance of
g-term support of
ew reinforces the need
ins in the context of
em, including the
ar food systems;
nental impacts of
ow to implement
policy changes and
ractices.
ementing the priorities
nd natural resources
funding for agricultural
nal industries and
ourage
stry to provide
ts; and expanding
ducation levels.
nomics of distribution
rgies among carbon
ustainable agriculture,
policy levers for
d, and international
nplementation of
derstanding of the soil
soil carbon storage.

FIGURE A1. Framework for Sustainable Nutrition Science



SOURCE: Adapted from Reinhardt et al. (2020) and Tagtow, Herman, and Sabo (2021)

From Silos to Systems defines sustainable nutrition science as research and education at the intersection of nutrition, food production, and climate and environment. Sustainable nutrition science could be considered a subset of the broader field of sustainable food systems research, which would also incorporate points along the supply chain beyond food production, including food packaging, storage, transportation, retail, and service; economic and social dimensions of sustainability; and illness or injury resulting from environmental exposures or workplace hazards related to food production. Sustainable food systems research may also incorporate the social, political, and commercial determinants of food systems and health. FIGURE A1 depicts the field of sustainable nutrition science, indicated in italics, in the context of sustainable food systems research.

SOURCES: TAGTOW, HERMAN, AND CUNNINGHAM-SABO (2021); SPIKER, REINHARDT, AND BRUENING (2020); HLPE (2014).

FIGURE A2. PRISMA Flow Diagram for Project Search and Selection

Unique projects excluded duplicate Federal RePORTER records resulting from funding distributed across multiple fiscal years for the same project. In such cases, all funding distributed was still counted in total funding.

SOURCE: PAGE ET AL. (2021).

References

- Fleischhacker, Sheila E., Catherine E. Woteki, Paul M. Coates, Van S. Hubbard, Grace E. Flaherty, Daniel R. Glickman, Thomas R. Harkin, et al. 2020. "Strengthening National Nutrition Research: Rationale and Options for a New Coordinated Federal Research Effort and Authority." *American Journal of Clinical Nutrition* 112 (3): 721–69. https://doi.org/10.1093/ajcn/nqaa179
- HLPE (High Level Panel of Experts on Food Security and Nutrition). 2014. "Food Losses and Waste in the Context of Sustainable Food Systems." Rome: Food and Agriculture Organization. http://www.fao.org/3/i3901e/i3901e.pdf
- ICHNR (Interagency Committee on Human Nutrition Research). 2016. National Nutrition Research Roadmap 2016–2021: Advancing Nutrition Research to Improve and Sustain Health. Washington, DC: Interagency Committee on Human Nutrition Research.
- NCSES (National Center for Science and Engineering Statistics). 2021. "Data Table: Federal Obligations for Research, by Agency and Performer." FFRDC Research and Development Survey. Alexandria, VA: National Science Foundation. https://www.nsf.gov/statistics/srvyffrdc
- NIH (National Institutes of Health). 2021. "Federal RePORTER." Bethesda, MD: US Department of Health and Human Services. https://federalreporter.nih.gov
- Page, Matthew J., Joanne E. McKenzie, Patrick M. Bossuyt, Isabelle Boutron, Tammy C. Hoffmann, Cynthia D. Mulrow, Larissa Shamseer, et al. 2021. "The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews." *BMJ* 372 (71). https://doi.org/10.1136/bmj.n71
- Reinhardt, Sarah L., Rebecca Boehm, Nicole Tichenor Blackstone, Naglaa H. El-Abbadi, Joy S.
 McNally Brandow, Salima F. Taylor, and Marcia S. DeLonge. 2020. "Systematic Review of Dietary Patterns and Sustainability in the United States." *Advances in Nutrition* 11 (4): 1016–31. https://doi.org/10.1093/advances/nmaa026
- Sparling, Thalia M, Howard White, Samuel Boakye, Denny John, and Suneetha Kadiyala. 2021.
 "Understanding Pathways Between Agriculture, Food Systems, and Nutrition: An Evidence and Gap Map of Research Tools, Metrics, and Methods in the Last 10 Years." *Advances in Nutrition* 12 (4): 1122–1136. https://doi.org/10.1093/advances/nmaa158
- Spiker, Marie, Sarah Reinhardt, and Meg Bruening. 2020. "Academy of Nutrition and Dietetics: Revised 2020 Standards of Professional Performance for Registered Dietitian Nutritionists (Competent, Proficient, and Expert) in Sustainable, Resilient, and Healthy Food and Water Systems." *Journal* of the Academy of Nutrition and Dietetics 120 (9): 1568-1585.e28. https://doi.org/10.1016/j.jand.2020.05.010
- Tagtow, Angela, Dena Herman, and Leslie Cunningham-Sabo. 2021. "Next-Generation Solutions to Address Adaptive Challenges in Dietetics Practice: The I+PSE Conceptual Framework for Action." *Journal of the Academy of Nutrition and Dietetics*. March. https://doi.org/10.1016/j.jand.2021.01.018.