Union of Concerned ScientistsUCS Science Network – Union of Concerned Scientists http://blog.ucsusa.org a blog on independent science + practical solutions Fri, 13 Oct 2017 19:24:43 +0000 en-US hourly 1 http://blog.ucsusa.org/wp-content/uploads/cropped-favicon-32x32.png UCS Science Network – Union of Concerned Scientists http://blog.ucsusa.org 32 32 How Pruitt Listens: Removing Clean Power Plan Web Resources Undermines Public Engagement http://blog.ucsusa.org/science-blogger/how-pruitt-listens-removing-clean-power-plan-web-resources-undermines-public-engagement http://blog.ucsusa.org/science-blogger/how-pruitt-listens-removing-clean-power-plan-web-resources-undermines-public-engagement#comments Fri, 13 Oct 2017 18:55:27 +0000 http://blog.ucsusa.org/?p=54300

On Monday, Scott Pruitt, Administrator of the Environmental Protection Agency, announced his long awaited formal proposal to repeal the Clean Power Plan, the defining regulation in President Barack Obama’s battle against climate change. Talk of the repeal has made headlines for months, after President Donald Trump’s executive order addressing energy and climate policy and his announcement that he intended to withdraw from the Paris Climate Accord. News about a potential replacement for the rule has swirled for weeks.

Yet amid all of the discussion, the Web resources and information that the government has long provided to help inform us about climate change, the social cost of carbon, and the Clean Power Plan itself have been disappearing from federal websites. For members of the public looking to learn about the science and the policy analyses that underlie years of rulemaking and debate, the sources have become harder to find. We’ve found and reported on a number of examples of these types of removals through our work monitoring federal websites at the Environmental Data & Governance Initiative.

Web resources gone missing

After the EPA’s announcement on April 28 that it would be overhauling its website to “reflect the agency’s new direction under President Donald Trump and Administrator Scott Pruitt,” most of the sections of EPA.gov devoted to climate change and work to adapt to and mitigate its harms were removed. While most of these resources were archived, few have been returned or replaced on the official EPA website, where they can be most easily accessed. Certain portions, like “A Student’s Guide to Global Climate Change,” never even made it into an EPA Web archive, likely due to copying errors.

During the same set of EPA website removals, the website for the Clean Power Plan was itself removed and its URLs began redirecting to a new website about implementing President Trump’s executive order. While the previous website hosted resources for the public to understand the Clean Power Plan and for states to develop emissions plans, the new website links to the Federal Register, the order notice, and related news releases, but provides minimal informational resources directed at communicating the significance of the policy shifts to the public. The previous website linked to Spanish language Web resources, like Clean Power Plan facts sheets and community resources, which were also removed without being archived, likely as a result of the same errors mentioned above.

In Administrator Pruitt’s announcement and in the proposed repeal itself, Obama-era analyses of the potential health benefits of the rule and the overall social cost of carbon have been questioned and tossed aside. The information and resources that could provide the public insight into this debate have, once again, been removed: the EPA’s webpage on the social cost of carbon was part of the April 28 removals and the White House webpage on the topic, containing a wealth of relevant links, was removed and archived on inauguration day.

The legal basis for the requirement that EPA regulate greenhouse gas emissions, known as the endangerment finding, is another crucial resource in understanding the debate over the rule. But the EPA’s endangerment finding webpage, too, was swallowed up by the April 28 removals, and has since been either hard to access or, at times, simply not available.

The importance of well-informed public comment

Notice-and-comment rulemaking, used by the federal government whenever it puts new regulations in place or removes existing ones, relies on the ability of the public to provide informed input about the ways in which we will all be affected by a new regulation and how we weigh the costs and benefits. Public comment dockets today are often dominated by industry groups and civil society organizations. Making government-funded information harder to access simply serves to further the divide between those who have the capacity to craft a substantive public comment and those who do not.

A scientist or member of the public working on their own time to write a public comment, relying only on public information resources, can make an impact, as their comment has equivalent standing to any other submission and must be accounted for just the same. The public information that the government has historically made available about the Clean Power Plan’s projected air quality improvements, for example, would provide a way for people to weigh in on the debate over how to value the regulation’s predicted health benefits. But without access to public information, we’re allowing the idea of regulation with citizen input to become nothing more than a myth.

The likely replacement for the Clean Power Plan, if there is one, will be designed to masquerade as a sufficient regulation of emissions in order to evade litigation. Instead of a comprehensive rule like the Clean Power Plan, regulating pollution from coal power plants by considering wholescale how they use energy and produce emissions, it will likely focus only on reducing pollution through improvements in efficiency or fuel replacements at individual power plants. Past EPA studies have determined that these types of changes would result in only an approximate 4% increase in coal plant efficiency.

After approving the proposed repeal on Tuesday, Administrator Pruitt said, “Any replacement rule will be done carefully, properly, and with humility, by listening to all those affected by the rule.” It’s clear from his Administration’s removal of Web resources, however, that he has no intention of enabling that pledge by ensuring that public resources remain available to help citizens understand the proposed policy shifts.

When the health and well-being of the public are threatened so directly by the harms of climate change, we cannot allow our government to censor the information that facilitates the public’s crucial expression in forming new policy.

How you can make an impact

While an overturn of the proposed repeal is unlikely, it is still important that we, as members of the public, weigh in on the benefits that the Clean Power Plan would have to the climate and public health. What we have to say must be taken into account during the rulemaking process and will bolster any litigation that occurs after the repeal.

Once the Federal Register publishes the Notice of Proposed Rulemaking in the coming days, the public will have 60 days to submit comment. Find out how to submit a comment here.

Resources

Here are resources about the Clean Power Plan and its benefits, some mentioned above, that have been removed from federal websites and can be used to craft your comment:

 

Toly Rinberg is a Fellow at the Sunlight Foundation working on documenting and contextualizing changes to federal websites, and understanding how these changes affect public access to Web resources. He also helps lead the website monitoring working group at the Environmental Data & Governance Initiative, working with a volunteer team to track and report on changes to environmental, climate, and energy websites. He is currently taking time off from his Ph.D. in applied physics at Harvard University.

Andrew Bergman is a Fellow at the Sunlight Foundation, where he is classifying changes to federal websites, and a member of the Environmental Data & Governance Initiative, where he helps lead the website monitoring team. He is also working to monitor and coordinate response to environmental agency oversight issues with partners, like UCS. He is currently on leave from his Ph.D. in applied physics at Harvard University.

Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/how-pruitt-listens-removing-clean-power-plan-web-resources-undermines-public-engagement/feed 1
Make Public Engagement a Professional Priority http://blog.ucsusa.org/science-blogger/make-public-engagement-a-professional-priority http://blog.ucsusa.org/science-blogger/make-public-engagement-a-professional-priority#comments Thu, 07 Sep 2017 16:13:17 +0000 http://blog.ucsusa.org/?p=53302

During graduate school, I believed my responsibility as a scientist during outreach events was to share my work with as many non-scientists as possible. I assumed that my extroverted personality, boundless enthusiasm, and booming voice guaranteed my success at public outreach. I never considered improving or diversifying my communication skills, nor did I value the unique perspective that I might bring to science.

Like so many others, it wasn’t until the November 2016 election that I considered how I, the daughter of Indian immigrants from landlocked villages and modest means, came to study oceans and climate change. From this foundation, I gradually developed and now execute two public engagement aims that often intersect:

1. How the observations I make in the lab and field percolate into the communities around me.

2. The concerns facing marginalized communities, especially within science.

These efforts do not always take the same form, nor are they easy to pursue—certain issues can be especially difficult to write about—but I see that sharing painful stories about minority scientists increases the scientific community’s capacity for empathy, and communicating stories of innovation and progress in the battle against climate change imbues optimism and facilitates action.

Outside of my current position as a technician at UC Davis’ Bodega Marine Laboratory, I work with a local organization dedicated to raising awareness about climate change and a national organization committed to talking about the issues confronting self-identifying women scientists. I also serve on the digital advisory board of a regional publication that is seeking to add diverse voices to conversations about natural science.

Public engagement is a scientist’s implicit responsibility and can be beneficial for the public and scientist alike

Public engagement is often seen as a low priority for academic scientists. Many scientists do not feel compelled to take their research outside of academia. Common justifications include that developing resources for public engagement siphons time and energy from research, misrepresentation in the media could damage reputations, or institutions lack incentives for engagement. While these concerns are understandable, reserving our findings for our colleagues limits the impact of our work.

As scientists, we strive for intellectual products that improve and enhance our understanding of the world around us. Tools for effectively communicating to technical and lay audiences are not in opposition, nor are they as disparate as many may think; thoughtful, clear, and succinct communication tools are ubiquitously useful. By carefully considering audiences beyond our target journals and scientific societies, we create opportunities to develop unique collaborations that can result in the co-production of knowledge.

Effective public engagement is manifold, but requires experimentation

In this era of technology and social media, successful public engagement does not necessarily require face time (although you can use FaceTime or Skype A Scientist). Public outreach often encompasses classroom visits, laboratory open house events, and public talks/demonstrations. While personal interactions are inarguably priceless, these activities are generally eschewed in favor of research due to their high time commitment. This is where digital media can intervene.

During the era of MySpace, Friendster, and LiveJournal the concept of ‘blogging’ emerged—an opportunity for anyone with an opinion and keyboard to share their opinions. While these ancestral social media sites have faded, blogging has been transformed into an opportunity to use our voices (and fingers!) to reach new audiences. Websites like Medium and WordPress make blogging accessible, and many website building/hosting services seamlessly integrate blogging into their schemata. The time commitment is dictated by the blogger and the topics that they choose to communicate. Many academics will admit to initiating and abandoning their blogs for this very reason, myself included.

Conversely, Facebook, Twitter, and Instagram—among many, many others—provide approachable, yet professional interfaces for casual and concise communication. While a short orientation may be required to acquaint yourself with these platforms, their rewards are bountiful. Through Twitter alone, my professional network has expanded geographically as well as across disciplines and industries (a Twitter interaction instigated this very blog post!). While I maintain a blog series with pie-in-the-sky long-term goals, I find that ephemeral, short-term social media interactions can sometimes be more professionally productive per unit of effort and therefore serve as an excellent gateway into public engagement.

Identify what motivates you to speak up and connect with your community

The November 2016 election was my catalyst for public engagement, but has not been my sole motivator going forward. Specifically, blogging has been an incredible learning experience for me, providing insight on the complexity of people, and the pressure that academia puts on those who don’t conform to its rigid framework.

Public engagement is not a part of my formal job description, but it is something that I make time for outside of my 40-hour work week. As scientists, we are driven by questions and certainly find our own work compelling. But we must unravel these complex questions and stories and find the thread that links us with our communities.

 

Priya Shukla is an ocean and climate scientist with the Bodega Ocean Acidification Research (BOAR) group based at UC Davis’ Bodega Marine Laboratory. She received her undergraduate degree in Environmental Science and Management at UC Davis and earned her Master’s in Ecology from San Diego State University. Priya uses science communication to bridge issues concerning social justice, rapid environmental change, and the scientific community. 

Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/make-public-engagement-a-professional-priority/feed 2
Connecting the Dots on Climate Science: The Importance of a Complete Science Narrative http://blog.ucsusa.org/science-blogger/connecting-the-dots-on-climate-science-the-importance-of-a-complete-science-narrative http://blog.ucsusa.org/science-blogger/connecting-the-dots-on-climate-science-the-importance-of-a-complete-science-narrative#comments Tue, 05 Sep 2017 21:18:38 +0000 http://blog.ucsusa.org/?p=53435
A 2014 session of the International Panel on Climate Change (IPCC)—a crucial "dot" in a connected climate science narrative. Photo: IPCC (Flickr)

In Walter M. Miller’s classic apocalyptic novel, A Canticle for Leibowitz, an atomic holocaust leaves the world in a modern version of the Dark Ages. In this post-apocalyptic world, books are burnt and cultural information destroyed by anti-intellectual mobs. The monks of a small knowledge-hoarding religious institution try to preserve, understand, and control what information remains.

A few pre-apocalyptic scraps of paper are unearthed and the writing on these is transformed into holy artifacts. One of these holy artifacts is The Sacred Shopping List, a hand-written memo by a long-dead engineer named Leibowitz, that reads: “Pound pastrami, can kraut, six bagels—bring home for Emma.” With so little information available, The Sacred Shopping List becomes a pillar for the monks’ religious narrative.  The general population are just followers to the outlandish narrative the monks concocted from the holy artifacts.

A Canticle for Leibowitz depicts a classic problem that arises when people try to collect information to develop a narrative. The monks connected only the dots they could find, not having a clue that they had collected an incomplete and misleading set of dots. In science terms, the sample size was both small and biased, leading to their outlandish narrative.

In our own world, a functional science narrative requires a complete and well-chosen set of dots so scientists may connect them into a sensible narrative. Over the last few weeks, the Trump administration has eliminated several important dots (sources of information) about science, some openly and others more discreetly. These losses, when strung together, are significant –  they may drive us back to using our own Sacred Shopping List to develop our science narratives.

Climate science under threat

In 1989, President Reagan established the Federal Advisory Panel for the Sustained National Climate Assessment to help translate findings from the National Climate Assessment into concrete guidance for public- and private-sector officials making decisions about how to deal with climate change. This important National Oceanic Atmospheric Administration (NOAA) advisory group, a critical dot in this science narrative, was eliminated a few weeks back when the current administration chose not to renew the charter.

NOAA recently completed the first draft of the Fourth National Climate Assessment Report, which is intended as a special science section of the National Climate Assessment, congressionally mandated every four years. NOAA does not control how the information in the report will be used, and the loss of the Federal Advisory Panel leaves a vacuum in developing the guidance that should come from the Fourth National Climate Assessment Report. The draft report is under review by the current administration, which must approve it before the report can be published. It is critical that this important source of information be used in the science narrative about climate change.

The administration has also proposed a 2018 federal budget that zeroes out the United States’ nearly $2 million contribution to the Intergovernmental Panel on Climate Change (IPCC). The IPCC is crucial to coordinating efforts of several thousand scientists, industry experts, nonprofit researchers, and government representatives from across the globe who review reports that provide climate analysis for decisions ranging from the Paris climate agreement to the US military’s national security threat assessments. Eliminating funding for the IPCC would leave US scientists out of important scientific discussions and inhibit our country’s—and the world’s—ability to respond to climate threats.

Our congressional leaders will play a key role in determining whether IPCC funding will continue in the 2018 fiscal year. We need our lawmakers to uphold the United States’ climate leadership and commit to supporting funding for the IPCC. This is one dot we can’t afford to lose.

A path forward

One bright spot comes from our military, which continues to acknowledge the role of science in developing infrastructure that is resilient to the increasing national security risks from climate change. This is where the rubber meets the road. The US military is already dealing with threats from the growing numbers of refugees fleeing affected areas and numerous coastal military installations that will be impacted by climate change. They are using a useful set of dots to make their decisions.

We all benefit from these critical “dots” and need them to be connected into a sensible science narrative.  Many scientists like myself strongly support continuing funding for IPCC, bringing back the Federal Advisory Panel, and protecting federal climate science and research. It is important to use the knowledge of experts to evaluate and compare information and to be part of the plan for how the information is integrated into policy. The science narrative cannot rely on The Sacred Shopping List.

 

Keith Daum is an independent researcher who specializes in climate and environmental issues. In 2014, he retired from the Idaho National Laboratory after 24 years there. Previously, he served as a research scientist with RTI International. He holds a PhD in Chemistry from the University of Idaho and a BS/MS in Environmental Sciences from Texas Christian University.

Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/connecting-the-dots-on-climate-science-the-importance-of-a-complete-science-narrative/feed 1
Global Solutions Start at Home http://blog.ucsusa.org/science-blogger/global-solutions-start-at-home http://blog.ucsusa.org/science-blogger/global-solutions-start-at-home#respond Wed, 30 Aug 2017 21:42:36 +0000 http://blog.ucsusa.org/?p=53151
Electric vehicle charging stations line the perimeter of San Francisco's City Hall. Photo: Bigstock.

“Think globally, act locally.”

I first heard this phrase as a child who had just learned about Earth Day at school. To my 11-year old self, it felt empowering; I could help the environment by recycling and conserving water. While the idea of taking action to solve pressing problems continued to inspire me through to adulthood, I’ve recently come to fully appreciate the importance of local action.

Keep Hayward Clean & Green Task Force. Photo credit: City of Hayward

After I had spent several years in Washington, D.C., first as a legislative adviser in Congress and then as an analyst in the White House, life brought me to California where I now work as a technologist. Missing my connection to government, I successfully applied for an appointment to a standing task force in my city, Hayward, California. During this time, part of my technology work has included developing data-enabled solutions for distributed renewables such as rooftop solar and on-site batteries. While I left federal government believing I was leaving behind the ability to significantly impact policy issues that mattered to me, the intersection of my professional and my community work have shown me the importance of local government engagement.

Reflecting on my local engagement, two themes have emerged:

Local governments play a critical role in science-related policy issues, including those with global implications.

We often think of the most pressing science-related policy issues, such as climate change policy, as being national (or global) in nature. While many important policy decisions are made at the national level, local government can also play a significant role both as a testbed for new policy ideas and as the implementation arm for high-level policies.

An example of this is vehicle electrification, a solution advocated by Union of Concerned Scientists (UCS) as part of a broader environmental and climate change mitigation strategy. At the national level, the Obama Administration set goals for expanding the number of electric vehicles (EVs) on the road. At the same time, states like California have been pioneering efforts to reduce emissions and encourage vehicle electrification. Municipal and regional governments provide the critical “last mile” for a comprehensive policy strategy. At this level, government policies can be as diverse as switching municipal fleets to EVs, ensuring the availability of charging stations in public garages, incentivizing or requiring EV-charging access in building codes, or implementing special permitting fees for EV chargers. To influence these crucial “last mile” policies, you must look to your state houses and city halls instead of to Washington.

There are few resources to help people, particularly engineering & science professionals, who want to get involved in their local communities…but we are trying to change that.

Once you appreciate the importance of local engagement, you may find yourself wondering where to start. While scientific professional societies have provided a conduit for informing engineers & scientists about national level policy issues for decades, fewer resources exist for helping people understand the issues and get involved in local (city, state, or regional) government. While a limited number of state-level fellowships provide the opportunity for a small number of engineers & scientists to work in state government, there are even fewer municipal programs.

You can, instead, create your own engagement opportunities. Visit your city’s website to read your general plan or learn about initiatives, attend city council meetings, request meetings with your city representatives—who are usually happy to meet their constituents—and apply for a board or commission. The latter is a particularly impactful, though too often overlooked, way to engage. Through my own task force involvement, I have had the opportunity to meet with leaders in my community and learn about issues ranging from gang prevention to compliance with Environmental Protection Agency regulations.

Despite its possibilities, local involvement seems to be the exception for people who are interested in science-related policy. Most of the scientists I know are unaware of how they can become involved locally and don’t realize they can have an impact. For this reason, I founded Engineers & Scientists Acting Locally (ESAL).

ESAL is a non-partisan, non-advocacy organization dedicated to helping engineers & scientists increase their engagement in their city, state, and regional governments and communities. We are currently assessing interests and engagement levels of engineers and scientists. If you are a scientist or engineer, please share your interests and experiences with us through this survey.

The work of organizations like UCS helps engineers, scientists, and members of the broader public understand the critical role that science and technology plays across policy issues. This awareness has made technically informed discussions an integral part of policy formulation at the federal level. Local governments also grapple with important science-related issues. By getting involved as an engaged citizen, advocate, and volunteer in your local community, you can help shape local policies that align with global solutions.

 

Arti Garg is the Founder and Chair of Engineers & Scientists Acting Locally (ESAL). She is a data scientist who specializes in industrial and internet of things (IoT) applications. Previously, she worked in the White House Budget Office overseeing a $5 billion portfolio of research and development investments at the Department of Energy. She also served as an American Physical Society-sponsored science policy fellow with the House Foreign Affairs Committee. She was appointed to the Keep Hayward Clean and Green Task Force in 2015. She holds a PhD in Physics from Harvard University and an MS in Aerospace Engineering from Stanford University.

Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/global-solutions-start-at-home/feed 0
Warehouses As an Environmental Justice Issue http://blog.ucsusa.org/science-blogger/warehouses-as-an-environmental-justice-issue http://blog.ucsusa.org/science-blogger/warehouses-as-an-environmental-justice-issue#comments Tue, 29 Aug 2017 19:23:49 +0000 http://blog.ucsusa.org/?p=53277
Photo: Atomic Hot Links/CC BY-NC-ND 2.0 (Flickr)

When we think of locally undesirable land uses, we often think of large power plants, puffing single plumes of pollution. But many plumes of pollution from trucks traveling to and from warehouses can have equally large impacts on health. 40% of US imports enter through the ports of Los Angeles and Long Beach. Trucks travel frequently to deliver the goods to warehouses, and further move the goods from those facilities to more customers. In the era of e-commerce, high demand for express deliveries further contributes to the massive expansion of the warehousing industry.

As an Angeleno commuter, I am deeply impressed that a large number of giant warehousing facilities emerge in the suburbs along the Interstate 10 when I drive to work. But what do these facilities bring to our communities besides consumer goods?

The significant expansion of the warehousing industry

Figure 1 Percentage changes compared to the Year 2003 in the number of establishments in selected industry sectors (Data sources: County Business Pattern 2003-2015)

Over the last decade or so, the warehousing industry has expanded substantially, especially compared to the other industry sectors. In the Los Angeles Metropolitan Area, the number of warehouses and storage facilities increased by 21% between 2003 and 2015 (see Figure 1). However, during the same period, the construction sector got a 9% increase, wholesale and retail generally remained the same, and the manufacturing sector experienced a 23% plunge. While these traditional sectors in the economy stagnate, the warehousing industry becomes a star that is experiencing continued prosperity in the recent decade.

Figure 2 Number of establishments in warehousing and storage industry in the largest eight metropolitan areas in the U.S. (Data sources: County Business Pattern 2003-2015)

Expansion of the logistics industry isn’t limited to Los Angeles. Among the largest eight metropolitan areas in the US, the number of warehousing establishments increased by at least 20% in six of them: Los Angeles, Chicago, Dallas, Houston, Philadelphia and Miami (see Figure 2). The growth rate in Houston reached as high as 40%. The spatial expansion of warehouses is especially dramatic in metropolitan areas with abundant cheap suburban land. Warehousing developers favor this type of land as it offers many conveniences for warehousing development: low rent, large parcels, weak regulations, and good regional connections.

What impacts can warehouses have on communities?

The increased number of warehousing facilities not only consume large tracts of land, but also bring about substantial environmental externalities. Freight trucks generate air pollutants, noise, pavement damage, and traffic safety threats while moving into and out of warehouses.

According to studies in public health and traffic engineering, a truck creates significantly higher environmental impacts than a passenger vehicle. The exposure of local residents, especially children and elderly people, to truck related emissions like NOX and particulate matter would cause health outcomes including asthma and respiratory allergies.

A street view in the City of Carson where trucks (right) occupy all road lanes next to a residential neighborhood (left) (Photo: Quan Yuan)

Roads filled with semi-trucks are a familiar sight in areas and neighborhoods with warehouses. It suggests the great impacts that frequent truck movement could have on the local communities. More and more residents are becoming aware of these externalities associated with warehousing activities. Some of them have organized to fight against the siting of new warehousing projects. For instance, the World Logistics Center, a major warehousing project under review in the City of Moreno Valley, is opposed by local resident groups, environmental advocates, and public agencies including the South Coast Air Quality Management District. This huge project, with floor space totaling around 40 million square feet, rouses concerns about the environmental risks associated with substantial truck movement.

Do some neighborhoods receive more warehousing facilities than others?

Figure 3 Spatial distribution of warehouses and two selected types of neighborhoods in the Los Angeles region (Date sources: Costar, Inc.; American Community Survey 2010)

Given that warehousing facilities are regarded as locally undesirable, an important question arises: are they disproportionately distributed? Unfortunately, the answer is yes. My recent analysis of warehousing location in Los Angeles revealed that low-income and medium-income minority neighborhoods contain a vast majority of warehouses and distribution centers (see Figure 3). Apart from traditional industrial clusters in the East LA and Gateway cities, suburban neighborhoods in the Inland Empire are rising hotspots for warehousing development. Econometric model results confirm the spatial patterns that minority neighborhoods receive significantly more warehouses than white neighborhoods, after controlling for household income, land rent and many other variables. The empirical evidence implies a classic environmental justice problem.

But why? Warehousing developers search for locations with low land rent, low-wage labor pool, weak political power, and favorable public policies. Economic, sociopolitical and institutional factors are equally important in the dynamics. When local authorities are indifferent about warehousing development, minority residents may not be able to resist this spatial inequity, or unequal spatial distribution of warehouses.

This environmental justice problem is drawing the attention of the public, academia, and policy makers. Land use regulations, environmental standards, vehicle fleet upgrades, and techniques (such as using plants as buffers) are all potential options for alleviating the problem. As warehouse development continues to increase, let’s take seriously this environmental justice issue, and come up with feasible solutions that stop burdening our minority communities with air pollution.

Quan Yuan is a Ph.D. candidate in Planning and Policy Development at Sol Price School of Public Policy, the University of Southern California. His research interests mainly lie in urban transportation planning, freight, parking, and environmental sustainability.

Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/warehouses-as-an-environmental-justice-issue/feed 2
The Soil Solution: One Reason to be Optimistic About the Environment is Right Beneath Our Feet http://blog.ucsusa.org/science-blogger/the-soil-solution-one-reason-to-be-optimistic-about-the-environment-is-right-beneath-our-feet http://blog.ucsusa.org/science-blogger/the-soil-solution-one-reason-to-be-optimistic-about-the-environment-is-right-beneath-our-feet#respond Tue, 22 Aug 2017 18:42:37 +0000 http://blog.ucsusa.org/?p=53196

As a young geologist, it took me a while to appreciate the importance of soil and the opportunity soil restoration presents for addressing key challenges humanity now faces. Over time, studying how erosion moves rock, sediment and soil to shape landscapes, I became familiar with how soil both influences and reflects the evolution of topography. We’re all familiar with the topographic displays of bare rock in the Grand Canyon, sharp-angled mountain peaks, and the smooth, rounded profiles of soil-mantled slopes in the rolling hills of California. But I also came to notice that prosperous regions tended to have rich, fertile soil. Impoverished ones did not.

The state of the soil was not just of scientific interest. It was of fundamental importance to human societies.

The oldest problem

My 2007 book, Dirt: The Erosion of Civilizations, grew out of an interest in how our treatment of the land influenced the longevity of civilizations. I found that soil erosion and degradation played a far larger role in human history than I was ever taught. Societies that degrade their land do not stand the test of time.

What lies at the root of the problem? The plow. Consider the state of a freshly plowed field. That bare soil translates into vulnerability to erosion by wind or rain. While it takes nature centuries to build an inch of fertile topsoil, an afternoon thunderstorm can strip as much off a freshly plowed field. Society after society in regions around the world gradually plowed their way into poverty, from Classical Greece to the American Dust Bowl.

Yet the problem of soil degradation is not just ancient history. It is still with us and one of the least recognized, and most serious, facets of the environmental crisis facing humanity today. In 2015, the United Nations Food and Agriculture Organization reported that under conventional practices the world loses another third of a percent of its agricultural production capacity to soil degradation each year. And while the soil on about a third of the world’s cropland is already seriously degraded, U.S. soils have lost about half their soil organic matter. These trends seriously undermine efforts to feed the world’s growing population.

Soil cores with differences in soil quality resulting from differing farming practices. Photo: D. Montgomery

Nature’s hidden half

Fortunately, soil degradation is also one of the most solvable challenges we face. I didn’t learn this from studying history. I learned it in my yard, as my wife turned our Seattle lot into a verdant garden—and changed the way we saw soil.

When we bought our house, the yard hosted a scraggly lawn with wretched soil, hard khaki-colored dirt with about 1% organic matter and nary a worm to be found. Anne set out on an organic matter crusade, layering compost and mulch on garden beds to reintroduce organic matter to the soil. In just a few years time, we found our soil turning darker brown and our plants thriving.  Now, a decade later, the carbon content of our soil is up to almost 10%. We explored this transformation in The Hidden Half of Nature and came to realize the foundational role that microbial community ecology plays in soil fertility as well as plant and human health.

Growing solutions

Restoring the soil in our yard to build a garden happened far faster than nature could have made soil. And this led me to look at the question of whether we can rapidly reverse the historical trend of soil degradation—and whether solutions can scale from small subsistence farms in the developing world to large commodity crop operations in the developed world. To investigate, I visited farms around the world that had restored fertility to the soil and life to the land. In Growing A Revolution, I describe how adopting conservation agriculture practices—combining minimal ground disturbance, cover cropping, and complex crop rotations—can restore fertility to agricultural soils and help address critical issues humanity faces today: feeding the world, mitigating climate change, conserving biodiversity, and reducing pollution.

The author’s backyard garden. Photo: A. Biklé

Naturally, specific practices to adapt these general principles will vary across regions with different soils, climates, crops, economies and cultures. The lack of a simple recipe presents a tremendous challenge.  But it also provides opportunities for scientists to work in conjunction with farmers to rethink conventional agriculture and evaluate the effects of regenerative practices on soil health. Basically, we need to put soil ecology back on par with soil chemistry and physics in our philosophy of farming—and invest in the science behind the transition to conservation agriculture.

I never thought I’d write an optimistic book about the environment. But the farmers I visited who had adopted regenerative practices were using far fewer chemical inputs and far less diesel, and were much more profitable than their conventional neighbors. Their stories offer hope for wider adoption of farming practices that are not only good for farmers and rural communities but also protect our environment and can help secure a sustainable agricultural foundation for humanity’s future.

David R. Montgomery is a MacArthur Fellow and professor of geomorphology at the University of Washington. He is an internationally recognized geologist who studies landscape evolution and the effects of geological processes on ecological systems and human societies. He has authored more than 200 scientific papers and 5 popular-science books, and has been featured in documentary films, network and cable news, and on a wide variety of TV and radio programs. When not writing or doing geology, he plays in the band Big Dirt. Connect with him at www.dig2grow.com or follow him on Twitter (@dig2grow).

Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/the-soil-solution-one-reason-to-be-optimistic-about-the-environment-is-right-beneath-our-feet/feed 0
On Healing Sick Ecosystems http://blog.ucsusa.org/science-blogger/on-healing-sick-ecosystems http://blog.ucsusa.org/science-blogger/on-healing-sick-ecosystems#respond Thu, 03 Aug 2017 20:52:35 +0000 http://blog.ucsusa.org/?p=52428
Part of the Lehigh Gap Nature Center site before remediation, October 2002. Photo credits: lgnc.org/conservation

I am a person who is fascinated by organisms of all kinds. I like the cute fuzzy ones that most people like, but also the scaly, leafy, prickly, stinky, or slimy ones, as well as the ones we can’t see without a microscope but that have outsized effects on the world around them. I am amazed by how many different ways there are to be alive on this planet, and moved by the intricate connections living things have with each other and their environments.

As I began to study the diversity of life, I noticed a pattern: many creatures are in danger because we humans are unintentionally destroying their homes. Whether by pollution, climate change, or clearing habitats to build things of our own, we have made much of the world less habitable for the living things with which we share it. We have already driven some species extinct, and many others are perilously close.

I believe there is a compelling moral case for preserving healthy, diverse ecosystems. There is also a strong practical case: we depend on intact ecosystems for services like clean water, fresh air, and pollinators that help our crop plants reproduce. Living near green spaces also improves our health and society as a whole. Thus, I chose a career studying how to help ecosystems best recover from our more destructive impacts. In my PhD research in Prof. Brenda Casper’s lab at the University of Pennsylvania, I studied how interactions between plants, soil-dwelling microbes, and heavy metals can affect the long-term development of ecosystems on metal contaminated soils.

One of the two zinc smelters responsible for heavy metal pollution in the Palmerton Zinc Superfund Site. Photo credit: Lee Dietterich

Pollution and remediation: one site’s story

I conducted my studies in the portion of the Palmerton Zinc Superfund Site owned and managed by the Lehigh Gap Nature Center. The site consists of over 2000 acres on the side of a mountain in upstate Pennsylvania that was devastated by heavy metal pollution from two zinc smelters operating for much of the 20th century. When the site was at its worst, local residents and passersby on the Appalachian Trail, which traverses the site, frequently compared it to the surface of the moon, or the aftermath of a bomb explosion.

The site badly needed some kind of remediation to remove or contain the pollutants and mitigate their threat to human and environmental health. It was (and still is) crucial that remediation be guided by our best scientific understanding of site histories and the effects of heavy metals on humans and the environment. Interference in the form of censoring data about such sites, or letting corporate or political priorities dominate discussions about environmental stewardship, can only make remediation longer and more difficult.

Part of the Lehigh Gap Nature Center site before and after initial remediation (left, October 2002; right, August 2006). Photos: lgnc.org/conservation

Today, after over a decade of intensive remediation work involving scientists, community members, and numerous federal, state, and private organizations, the mountainside would be unrecognizable from the moonscape described above. Grass species with low metal uptake were planted to build healthy soil while keeping the metals sequestered underground. These grasses, now taller than most people, tower and sway in the breeze. In many places shrubs and small trees are coming in, and in the patches of forest that survived the pollution, dense canopies create cool shade over lush carpets of ferns. Birds, grasshoppers, and butterflies are diverse and abundant, and it is not uncommon to encounter deer at dawn or dusk. Hundreds of hikers and thousands of schoolchildren visit the area each year, largely thanks to land management and educational offerings by the Lehigh Gap Nature Center, which now owns about a third of the site.

Sustained collaboration between scientists, land managers, and community members has been essential to this remediation effort. Early in the process, researchers made valuable contributions by documenting effects of the polluted soils on the site’s plants, animals, and microbes and by testing numerous revegetation strategies. Remediation of a polluted site had not been attempted on such a large scale before, and this early testing was key to the successful establishment of large-scale plantings.

Wildlife returning to the Lehigh Gap Nature Center site. Photo credit: Lee Dietterich

Continuing challenges

Remediation of disturbed landscapes is an ongoing task, and both basic and applied scientific research are crucial to understanding how to do this task well.  Many fundamental questions remained when I began working in the site. For instance, we knew that a group of soil dwelling fungi called arbuscular mycorrhizal fungi (AMF; soil dwelling fungi that trade plants nutrients for sugars) were important for the growth of many plants there, but we had little idea how AMF might affect plant metal uptake or metal tolerance under field conditions. After a couple years of work at the site, in the lab, and on the computer, I found that mycorrhizal fungi have little effect plant metal uptake, but that there is a remarkably close relationship between a plant’s species identity and the chemistry of the soil underneath it. This suggests that once plants are growing in an area, adding AMF will have little effect on their metal uptake. However, knowing what plants are growing in a certain patch of soil can tell us a lot about that soil’s chemistry.

The researchers and managers of the Palmerton site also feared that an uninvited tree species, gray birch, accumulated such high leaf metal concentrations that its leaf litter would elevate metals at the soil surface and poison neighboring plants, including the grasses they had worked so hard to establish. This pollution of soil via leaf litter has been hypothesized to occur but it has not yet been thoroughly tested, and the Palmerton site seemed like an ideal setting for such a test. Again, I investigated, and after a couple years of study, including planting, monitoring, harvesting, and analyzing nearly 500 oak and maple seedlings in the site, my colleagues and I found that metal-contaminated birch leaf litter does not increase surface soil contamination or poison other plants, but that soils under the birches and grasses differ in their concentrations of metals and organic matter in ways that could shape the continued trajectory of plant community development in the site.

Science-based decision making helps us reclaim and remediate ecosystems. Photo credit: Lee Dietterich

How lessons learned from remediation help us rebuild ecosystems better

These findings are already shaping the course of continued remediation and broadening our more general understanding of how metal polluted ecosystems work. We now know that efforts to control plant metal uptake may be better served by altering soils or plant communities directly than by manipulating AMF. We also know that gray birch does not threaten remediation as was feared, though concerns remain that it may shade out the desired grasses or introduce metals into the food chain via its leaves. Furthermore, thanks to the work of dozens of other scientists in this and other contaminated sites, we are learning important information about the continued legacies of pollution, such as how metals do and do not move in groundwater, and the effects of contaminated sites on migrating birds that rest and feed there.

It is clear that conserving healthy, intact ecosystems remains preferable to disturbing them and then trying to rebuild them. As with most diseases, prevention remains far easier and cheaper than cure. However, for those landscapes we have already damaged, science is providing local residents and land managers with tools to improve their lives – and those of their invaluable fuzzy, leafy, or slimy neighbors—by reclaiming and restoring healthy ecosystems.

 

Lee Dietterich is an ecologist studying how interactions between plants and soils affect the movement of elements such as carbon, nutrients, and heavy metals in and through ecosystems.  He is currently a postdoctoral scholar in Prof. Daniela Cusack’s lab at UCLA.  When not doing science or exploring nature, he likes to play the piano and clarinet. 

Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/on-healing-sick-ecosystems/feed 0
Six Selfish Reasons to Communicate Science http://blog.ucsusa.org/science-blogger/why-communicate-science http://blog.ucsusa.org/science-blogger/why-communicate-science#respond Mon, 24 Jul 2017 13:21:48 +0000 http://blog.ucsusa.org/?p=52438

First, a confession: I never meant to be a science communicator.

I’m an aerospace engineer specializing in fluid dynamics, the physics of how liquids and gases (and granular materials and pretty much anything that’s not a solid) moves. As an undergraduate, I fell in love with the subject in part because of the incredible photos my professors used to help us see and understand how fluids behave. As a PhD student, I was frustrated by how little information there was online for the public to learn about this subject that impacts our daily lives.

From that frustration, my website FYFD was born as a place where I could share the beauty of my subject with the world at large.

An example of flow visualization, a technique physicists and engineers use to understand flows. Here fluorescent dye is painted on a model placed in a wind tunnel to reveal flow patterns. (Photo by NASA.)

Like many scientists, I began communicating science for selfless and altruistic reasons. But along the way, I learned there’s a lot to be gained for the communicator as well. So I’d like to share a few of the selfish reasons to communicate science.

The first one may seem a bit obvious, but engaging in science communication is a great way to hone your communication skills. Whatever path your career leads you down, those skills are key. Communicating science to the public, whether online or through local means, is generally a low-risk operation, but it’s an opportunity to practice and improve your skills so that when it really matters you can nail that job interview or research proposal.

Communicating science regularly can hone your skills for when the big moment arrives. (Comic by Jorge Cham/PhD Comics)

Participating in science communication regularly is also a great way to develop expertise in your subject area. When I started writing FYFD, it seemed like spending part of every day reading journal articles that had nothing to do with my research might be a waste of time. After all, learning the latest on how droplets splash was not going to help my work on high-speed aerodynamics. But toward the end of my PhD—after a few years of writing FYFD—I noticed that when professors and other students had questions that reached beyond our own area, the first resource they turned to was not Google Scholar—it was me.

The first time a professor asked me if I knew anything about the unexpected behavior they were seeing in an experiment, it was a revelation for me. I had unwittingly turned myself into an expert, not simply on the subject of my own research but on fluid dynamics in general. That broad familiarity with the field continues to be valuable today. It allows me to see connections between disparate studies and subjects, a skill that’s key to discovering new avenues for research.

If you choose to use science communication to raise awareness of your own work, it can help you gain exposure. A recent study showed that social media use can help increase a scholar’s scientific impact. It can also help you gain the notice of journalists, and there is evidence that media coverage of papers leads to more citations. Personally, my science communication efforts have almost exclusively highlighted the work of other researchers, but I have nevertheless benefited in terms of networking and new opportunities within my field.

A communicator’s excitement for a subject can galvanize their audience, as seen here when a post about unionid bivalves by the Brain Scoop’s Emily Graslie inspired Tumblr user artsyandnerdy to draw unionid fanart. (Image by artsyandnerdy, used with permission.)

Of course, setting up a Twitter account or a blog is no guarantee that you’ll start seeing your papers in The New York Times. Fortunately, that kind of audience isn’t necessary to see some personal benefits. One of my favorite aspects of science communication—especially in-person—is witnessing a positive-feedback loop of enthusiasm. When you’re genuinely excited about a subject, whether it’s fluid dynamics or unionid bivalves, that enthusiasm impacts your audience and can get them excited. Seeing that excitement in others simply reinforces your own enthusiasm.

Maintaining that reserve of enthusiasm for your subject is vital for motivating yourself when things are going poorly. As an experimentalist in graduate school, I faced a series of setbacks in my research, including spending half of the last year of my PhD rebuilding lab infrastructure instead of gathering data. We all periodically face moments when we ask ourselves: why the heck am I doing this? For me, spending a part of every day searching for a piece of my subject to share with the world was a chance to remind myself of what I love about fluid dynamics. Communicating science is an opportunity to see your field anew and renew your motivation to carry on in spite of the daily frustrations.

As you can see, there’s a lot to be gained, both personally and professionally, from engaging in science communication. If you’d like some resources or guidance on how to begin, UCS is a great place to start. AAAS also offers resources for scientists and your professional society may as well. For guidance to better online science communication, I recommend Science Blogging.

Good luck and remember to have fun!

Nicole Sharp is the creator and editor of FYFD, a fluid dynamics blog with a quarter of a million followers that has been featured by Wired magazine, The New York Times, The Guardian, Science, and others. Nicole earned her M.S. in aerospace engineering from Cornell University and her Ph.D. from Texas A&M University with experiments on the effects of surface roughness on airflow near a surface moving at Mach 6. She currently lives in Denver, Colorado, where she enjoys hiking, cycling, and skiing. You can find her online at @fyfluiddynamics or nicolesharp.com.

Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/why-communicate-science/feed 0
Environmental Injustice in the Early Days of the Trump Administration http://blog.ucsusa.org/science-blogger/environmental-injustice-in-the-early-days-of-the-trump-administration http://blog.ucsusa.org/science-blogger/environmental-injustice-in-the-early-days-of-the-trump-administration#respond Thu, 20 Jul 2017 04:02:11 +0000 http://blog.ucsusa.org/?p=52569

When the EPA was established in 1970 by Richard Nixon, there was no mandate to examine why toxic landfills were more often placed near low-income, Black, Latino, immigrant, and Native American communities than in more affluent, white neighborhoods. Nor was there much recognition that communities closer to toxic landfills, refineries, and industrial plants often experienced higher rates of toxics-related illnesses, like cancer and asthma.

Yet these phenomena were palpable to those living in affected communities. In the 1970s and 80s, local anti-toxics campaigns joined forces with seasoned activists from the civil rights movement, labor unions, and with public health professionals and scientists, drawing attention to the unevenly distributed impacts of toxic pollution, and forming what we now recognize as the environmental justice movement.

The new administration has mounted a swift and concerted attack on the federal capacity and duty to research, monitor, and regulate harmful pollutants that disproportionately affect women, children, low-income communities, and communities of color.  Two examples demonstrate the potential consequences: overturning the ban on chlorpyrifos, and a variety of actions that reduce collection of and public access to the data on which environmental justice claims depend.

Overturning the ban on chlorpyrifos

EPA Administrator Scott Pruitt overturned the chlorpyrifos ban, despite the fact that EPA scientists recommended that the pesticide be banned because of the risks it posed to children’s developing brains. Photo: Zeynel Cebeci/CC BY-SA 4.0 (Wikimedia Commons)

Chlorpyrifos is a commonly used pesticide. EPA scientists found a link between neurological disorders, memory decline and learning disabilities in children exposed to chlorpyrifos through diet, and recommended in 2015 that the pesticide be banned from agricultural use because of the risks it posed to children’s developing brains.

Over 73% of farmworkers in the U.S. work with vegetables, fruits and nuts, and other specialty crops on which chlorpyrifos is often used.  These agricultural workers are predominantly immigrants from Mexico and Central America, living under the poverty line and in close proximity to the fields they tend. A series of studies in the 1990s and 2000s found that concentrations of chlorpyrifos were elevated in agricultural workers’ homes more than ¼ mile from farmland, and chlorpyrifos residues were detected on work boots and hands of many agricultural worker families but not on nearby non-agricultural families.

In March 2017, EPA Administrator Scott Pruitt publicly rejected the scientific findings from his agency’s own scientists and overturned the chlorpyrifos ban, demonstrating the Trump administration’s disregard for the wellbeing of immigrant and minority populations. Farmworker families could be impacted for generations through exposure to these and other harmful pesticides.

Limiting collection of and access to environmental data

Because inequitable risk to systematically disadvantaged communities must be empirically proven, publicly available data on toxic emissions and health issues are crucial to environmental justice work. The Trump administration has already taken a number of actions that limit the collection and accessibility of data necessary to make arguments about environmental injustices that persist through time in particular communities.

Houston has a number of chemical plants in close proximity to low-income neighborhoods. Photo: Roy Luck/CC BY 2.0 (Flickr)

Workers, especially those laboring in facilities that refine, store or manufacture with toxic chemicals, bear inequitable risk. The Trump administration has sought to curb requirements and publicity about workplace risks, injuries and deaths. For example, President Trump signed off on a congressional repeal of the Fair Pay and Safe Workplaces rule, which required applicants for governmental contracts to disclose violations of labor laws, including those protecting safety and health. Without the data provided by this rule, federal funds can now support companies with the worst worker rights and protection records. President Trump also approved the congressional repeal of a rule formalizing the Occupational Safety and Health Administration’s (OSHA) long-standing practice of requiring businesses to keep a minimum of five years of records on occupational injuries and accidents.  While five years of record-keeping had illuminated persistent patterns of danger and pointed to more effective solutions, now only six months of records are required. This change makes it nearly impossible for OSHA to effectively identify ongoing workplace conditions that are unsafe or even life-threatening.

Another example is the administration’s proposed near elimination of the Integrated Risk Information System, or IRIS, a program that provides toxicological assessments of environmental contaminants. The IRIS database provides important information for communities located near plants and industrial sites that produce toxic waste, both to promote awareness of the issues and safety procedures and as a basis for advocacy. These communities, such as Hinkley, CA, where Erin Brockovich investigated Pacific Gas and Electric Company’s dumping of hexavalent chromium into the local water supply, are disproportionately low income.

Responding to Trump: Developing environmental data justice

Data is not inherently good.  It can be used to produce ignorance and doubt, as in the tactics employed by the tobacco industry and climate change deniers.  It can also be used to oppressive ends, as in the administration’s collection of information on voter fraud, a phenomenon that is widely dismissed as non-existent by experts across the political spectrum.  Further, even the data collection infrastructure in place under the Obama administration failed to address many environmental injustices, such as the lead pollution in Flint, MI.  Thus we would argue that promoting environmental data justice is not simply about better protecting existing data, but also about rethinking the questions we ask, the data we collect, and who gathers it in order to be sure environmental regulation protects all of us.

 

Britt Paris is an EDGI researcher focused on environmental data justice. She is also a doctoral student in the Department of Information Studies at UCLA, and has published work on internet infrastructure projects, search applications, digital labor and police officer involved homicide data evaluated through the theoretical lenses of critical informatics, critical data studies, philosophy of technology and information ethics.

Rebecca Lave is a co-founder of EDGI (the Environmental Data and Governance Initiative), an international network of academics and environmental professionals that advocates for evidence-based environmental policy and robust, democratic scientific data governance. She was the initial coordinator of EDGI’s website tracking work, and now leads their publication initiatives. Rebecca is also a professor in the Geography Department at Indiana University.

 Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

Pesticide Action Network
]]>
http://blog.ucsusa.org/science-blogger/environmental-injustice-in-the-early-days-of-the-trump-administration/feed 0
Timing, Pollinators, and the Impact of Climate Change http://blog.ucsusa.org/science-blogger/timing-pollinators-and-the-impact-of-climate-change http://blog.ucsusa.org/science-blogger/timing-pollinators-and-the-impact-of-climate-change#respond Fri, 07 Jul 2017 13:24:34 +0000 http://blog.ucsusa.org/?p=52148
Spring in the Blue Ridge Mountains, along the Rocky Broad River in the Bat Cave Preserve.

Sweetshrub (Calycanthus floridus). These flowers have a scent similar to overripe rotting fruit, and are visited by sap beetles

Periodically in the spring, I have the pleasure of teaching Plant Taxonomy to students at a small college in Asheville, North Carolina. Among other things, I love the way that teaching this class forces me to pay close attention to what is coming out of the ground, leafing out, or flowering at any particular point of the season in the Blue Ridge Mountains where our campus is nestled. Each week, I fill the classroom with clippings from plants for my students to examine, up close and personal, as they learn to recognize different families of plants and how they compare with one another: how trilliums differ from jack-in-the-pulpits, or spring beauty differ from rue anemone.

But a couple weeks into the semester this spring, it became abundantly clear that I was going to need to scrap my syllabus and completely rearrange my labs. A very warm and short winter followed by an early spring meant that many of the plants I depend on appeared to be blooming weeks earlier than usual. While I initially doubted my intuition, based solely on passing observations, I then pulled out my collection notes for lab on March 6 and found it was dated April 6, 2013. My intuition was right on target. The flowering period was three to four weeks earlier than when I last taught the class, just four years ago.

In my research, too, the early spring was evident and influential. I study pollination and floral biology in sweetshrub, Calycanthus floridus, which has wine-red-colored flowers with the scent of overripe, rotting fruit that attracts their pollinators, little sap beetles that crawl into the flowers and feed there. I’ve been following the timing of flowering and fruiting in this plant since 2007, and the data so far show that in years with an early, warm spring, the plant flowers earlier…and the beetles are nowhere to be found. The flowers are there in their glory, flooding the area with their intoxicating sweet aroma, but they are holding a party with no guests—and this does not bode well for their future. The plants depend on the beetles for pollination and subsequent seed production, and in years when the beetles don’t visit, their reproductive success drops to almost nothing.

Author (Amy Boyd) teaching pollination biology to students in the Blue Ridge Mountains of North Carolina.

Phenology and climate change

Timing of biological events—such as flowering and leaf-out in plants or egg-laying in insects—is called phenology, and increasing attention has been given to the study of phenology as we face a changing climate. Many organisms depend on climatic signals such as temperature as cues for their timing during the season, and so as the planet warms, their response to these cues will cause them to leaf out, bloom, mate or lay eggs earlier.

But here’s the rub: many organisms, like the sweetshrub, depend on relationships with other species…and not all species use the same cues. One may use mean daily temperature as its phenological cue while another uses day length. If two species that depend on their interaction with one another use different cues in a changing environment, or respond differently to similar cues, they may end up missing each other entirely—what is likely happening with the beetles and the sweetshrub.

Plant-pollinator mismatch

Scientists keeping watch over phenology are accumulating more and more evidence that our changing climate is affecting many diverse species and potentially disrupting the interactions among them. For example, a study of bumblebees and the plants they visit in the Rocky Mountains has found that the timing of both has shifted earlier, but not by the same amount. The shift in flowering has been greater than the shift in bumblebee timing, resulting in decreased synchrony—and both plants and pollinators may suffer as a result. In Japan, biologists have followed a spring wildflower (Corydalis ambigua) and its bumblebee pollinators and similarly found that the plants were more sensitive than the bumblebees to early onset of spring. Reduced synchrony of bees and flowers resulted in lower availability of pollinators for the plants, and potentially also lower availability of food for the pollinators.

As the planet warms, plants and pollinators alike may adjust to the changes in different ways, leading to mismatches between these symbiotic partners. This impact of climate change on phenology compounds all the other challenges facing pollinators today, like the loss and fragmentation of habitat, disease, pesticide use, and the spread of invasive species.

Maypop (Passiflora incarnata) flower being visited by carpenter bee pollinator (Xylocopa virginica)

Consequences for agriculture

So why should we care about such disruptions in phenology? Being forced to scrap my syllabus is a very minor consequence compared to the potential impacts on agricultural production. By some estimates, 35% of all crop species worldwide depend on or benefit from pollination by animals (including bees and other insects). Some 16% of all vertebrate pollinator species (such as hummingbirds and bats) are threatened with extinction, while at least 9% of all insect pollinators are threatened as well. Pollinators are essential partners with farmers who grow fruit, vegetables and nuts; without them, our own species faces loss of an important component of its food source. Similar mismatches may also change and disrupt relationships between crop plants and pest species, creating new challenges to agriculture or enhancing existing threats.

Farmers see the changes in phenology in their own fields, and they are already concerned about the future of agriculture in a changing climate. But we all need to be aware of the impact of climate change on the web of interactions that make up the world around us, so that we can support lawmakers and others who are ready to stop the human activities impacting our planet’s climate. Many biologists are out there watching, accumulating evidence with the systematic eye of science.  We must support their efforts—and listen to their messages about our impacts on the planet and our future.

 

Amy E. Boyd is Professor of Biology and Chair of the Division of Natural Sciences at Warren Wilson College in Asheville, North Carolina. She is an ecologist and evolutionary biologist whose research currently focuses on plant-pollinator interactions and phenological patterns.

 Science Network Voices gives Equation readers access to the depth of expertise and broad perspective on current issues that our Science Network members bring to UCS. The views expressed in Science Network posts are those of the author alone.

]]>
http://blog.ucsusa.org/science-blogger/timing-pollinators-and-the-impact-of-climate-change/feed 0