Life, Liberty, and the Pursuit of Immunity

How the Founding Fathers’ Support for Science Helped Eradicate Smallpox

In 1736, Benjamin Franklin’s four-year-old son Francis (“Franky”) contracted smallpox. Having observed the first uses of inoculation—the precursor to vaccination—during smallpox outbreaks in Boston in 1721 and 1730, Franklin was an enthusiastic proponent of the practice. But because Franky also suffered from gastrointestinal problems of an unknown cause, Franklin feared how even a controlled exposure to smallpox—necessary for inoculation—would affect the boy’s fragile health.

Weighing many variables and driven by uncertainty, Franklin gave in to caution and chose to postpone inoculating Franky—a decision not dissimilar to those made by some vaccine-hesitant parents today, which may seem rational and in the best interest of the child at the time but go against the scientific evidence. Franklin’s decision proved fatal.

Much as the disease left permanent pockmarks on victims lucky enough to survive, Franklin carried the scar of his decision not to inoculate Franky for the rest of his life. Writing in his autobiography years later, Franklin counseled other parents on the basis of his tragic experience: “I long regretted, and still regret, that I had not given [smallpox] to him by inoculation. This I admit for the sake of parents who omit that operation, under the supposition that they should never forgive themselves if a child died under it; my example showing that the regret may be the same either way, and that, therefore, the safer should be chosen.”

As Franklin wrote, “I long regretted, and still regret, that I had not given [smallpox] to him by inoculation. This I admit for the sake of parents who omit that operation, under the supposition that they should never forgive themselves if a child died under it; my example showing that the regret may be the same either way, and that, therefore, the safer should be chosen.”
The history of smallpox in America illustrates not only the value of the scientific method in fighting disease, but also the importance of recognizing the established scientific evidence when making decisions that affect both our personal and public health. As Americans debate what role government should play in the use of vaccines, we should consider how inoculation and vaccination immeasurably improved the human condition when they became widely practiced, and how ignoring this scientific fact can put everyone’s health at risk.

Inoculation and vaccination immeasurably improved the human condition when they became widely practiced. Ignoring this scientific fact can put everyone’s health at risk.

Protecting Public Health in Early America

Smallpox was eradicated in the United States in 1949 (globally in 1980), but throughout most of history, this highly contagious disease ravaged humanity. It afflicted people across continents, cultures, and social classes—from kings to commoners with no regard for race or creed—and typically killed between 15 and 30 percent of its victims. Its first signs were fever, headache, and fatigue, but after a few days small red spots would appear all over the body. The spots would swell and become raw, oozing, smelly, blister-like pustules that eventually—over the course of several weeks—scabbed over, peeled off, and left survivors with deep, pitted, permanent scars. Smallpox could also cause blindness when the area around the eyes was affected. Hemorrhagic smallpox, an atypical but even more dangerous form of the disease, caused severe internal bleeding and bleeding under the skin; it was fatal in almost all cases.

At the time Benjamin Franklin’s son died from smallpox, the method of vaccination discovered by the English doctor Edward Jenner that eventually led to the disease’s eradication—and paved the way for the modern-day vaccine revolution—was still decades away. Inoculation (also called "variolation" after the variola virus that caused smallpox) involved collecting pus from an infected person’s sores and inserting it under the skin of a healthy person. Vaccination, by contrast, relied on exposure to the mild, nonlethal cowpox virus instead of the deadly smallpox virus. Jenner’s groundbreaking discovery was that inoculating people with cowpox induced immunity to both diseases.

Inoculation was performed by passing a thread through a pustule on a recovering smallpox patient. The thread was allowed to dry for at least 24 hours (though it could be preserved for months), and then a half-inch piece was cut and placed into a shallow, half-inch incision—just barely allowing blood to come to the surface—in the arm or leg of the person being inoculated. The small wound containing the inoculating thread was covered with plaster for a day and then the thread was removed. When all went well, inoculation produced a minor smallpox infection and conferred lifetime immunity. However, a small percentage of those who received inoculation came down with a serious or even fatal case of the disease. Recipients of inoculation also remained contagious.
until they recovered from their symptoms. Typically, they were kept quarantined and cared for by those with immunity, but if protocol was not followed, it was possible to spread the disease to others.

The Evidence for Inoculation

Although inoculation had been performed in China for centuries and had made its way to parts of Africa and the Ottoman Empire, it had never been carried out systematically nor its results quantified. During the colonial era, inoculation was still very new to much of Europe and the New World.

One source for early information about inoculation in Britain and colonial America was a British aristocrat named Lady Mary Wortley Montagu who had survived smallpox in her twenties and had been left permanently disfigured by it. Not long after she recovered, while traveling in Turkey in 1717 with her husband (the British ambassador at Istanbul), she observed Turkish children being inoculated. Convinced of the safety and effectiveness of the procedure, she had her own two children inoculated and wrote of the experience to the Royal Society of London. Her ongoing efforts helped spread the practice in Britain.

Around the same time as Montagu’s experience, the influential New England minister Cotton Mather learned about inoculation for the first time from a slave in his household. Onesimus, as Mather called him, had undergone inoculation while still in Africa, and Mather shared what Onesimus told him with the medical establishments in both London and Boston. In a 1716 letter to the Royal Society of London, written before Montagu’s report, Mather stated that Onesimus had described “an Operation, which had given him

Lady Mary Wortley Montagu with her son, Edward Wortley Montagu, and attendants, painted by Jean Baptiste Vanmour. Having observed Turkish children being inoculated against smallpox, Montagu was so convinced of the safety and efficacy that she had her own two children inoculated, and promoted the practice throughout the rest of her life.
something of ye Small-Pox, and would forever preserve him from it, adding, That it was often used among [Africans] and whoever had ye Courage to use it, was forever free from ye Fear of the Contagion. He described ye Operation to me, and showed me in his Arm ye Scar.”

Science-based Action Pays Off

Little is known about what happened to Onesimus after he purchased his freedom from Mather, but the cross-cultural sharing of information between the two men—and between Mather and the broader scientific community—saved lives.

In 1721, little more than a decade before Franklin’s son contracted the disease, a smallpox outbreak devastated Boston. Colonists reacted to the concept of inoculation with skepticism both because of its very real—albeit small—risks and because of racial and cultural prejudices. The practice came from non-Western, non-Christian countries, and some colonists also distrusted doctors, who they believed were promoting inoculation for their own financial gain. Against this opposition, which threatened his very life (a crudely constructed bomb thrown through a window of his house failed to explode), Cotton Mather pushed for the first widespread inoculation effort in the American colonies, urging doctors all over Boston to implement the procedure Onesimus had described.

Zabdiel Boylston was the only doctor who answered Mather’s call, and through the joint efforts of the two men to gather data during and after the outbreak, persuasive scientific evidence emerged supporting inoculation. When the 1721 outbreak ended, almost 900 people had died, but the difference in death rates between those who contracted the disease via inoculation and all other victims was striking. Respectively, only six out of 244 people (2.5 percent) who contracted smallpox via inoculation died, while the disease claimed 14.1 percent of all other victims (844 out of 5,980). On the basis of this evidence, and additional evidence gathered from subsequent outbreaks, inoculation became an increasingly common practice in the American colonies and the early nation.

The influential New England minister Cotton Mather pushed for the first widespread inoculation effort in the American colonies.

Motivated by the consequences of his decision not to act on the evidence supporting inoculation, Franklin took several steps over the course of his lifetime that helped spread the science of inoculation throughout early America. During the 1750s, he collaborated with the physician William Heberden to collect more quantitative data and in 1759 published a pamphlet called “Some Account of the Success of Inoculation for the Small-Pox in England and America: Together with Plain Instructions By which any Person may be enabled to perform the Operation and conduct the Patient through the Distemper.”

Franklin provided detailed information in the pamphlet on the importance and effectiveness of inoculation, and—given his concern that many people would not be able to afford doctors’ fees—including clear and meticulous directions on how to perform it safely without a doctor. Some 1,500 copies were distributed to the public free of charge, and in 1774, Franklin also launched the Society for Inoculating the Poor Gratis, which offered free, doctor-administered inoculation.
Science Aids in the Fight for Freedom

Franklin was not unique among the founding fathers in embracing the scientific evidence supporting inoculation. The actions he and others took not only protected the public but also primed the nation for Jenner’s 1796 discovery of the much safer method of vaccination, which induced immunity without the risk of getting or spreading smallpox.

For example, George Washington (who was not inoculated but survived smallpox as a teenager) made inoculation mandatory for the entire Continental Army. During the siege of Boston (1775–1776), the British took advantage of a smallpox outbreak in the city by ordering some infected individuals to leave—not to protect other residents but to spread the disease. Washington refused to allow anyone exiting Boston to come into contact with the American troops camped just outside. Even after the British evacuated Boston, rumors circulated that they were continuing to use smallpox as a form of biological warfare. So in 1777, more than 50 years after the 1721 Boston outbreak that provided the first quantitative data on the effectiveness of inoculation, Washington decided to inoculate the army despite persistent public skepticism about the practice. He even resorted to inoculating some troops secretly, to avoid arousing opposition and fear in nearby towns. Historians view this science-based decision as an important military strategy that contributed to America’s victory over the British in the Revolutionary War.

John Adams and Thomas Jefferson had themselves inoculated well before the United States declared independence. Later, after Jenner’s discovery of the first vaccine, President Jefferson provided Meriwether Lewis and William Clark with quantities of the vaccine to distribute to Native Americans they encountered during their famous expedition. In letters written at the time, Jefferson said, “Every friend of humanity must look with pleasure on this discovery, by which one evil more is withdrawn from the condition of man . . . I know of no one discovery in medicine equally valuable.”
The first page of a letter dated June 2, 1803, in which Thomas Jefferson gives instructions to Meriwether Lewis and William Clark in preparation for their scientific expedition across America. On a subsequent page he made provision for sharing vaccines with Native Americans: “Carry with you some matter of the kine-pox; inform those of them with whom you may be of its efficacy as a preservative from the smallpox and encourage them in the use of it.”
Science and Democracy Must Work Together

In 1813, almost a century after Cotton Mather’s information-driven efforts to end the smallpox outbreak in Boston, President James Madison signed into law the first major vaccine policy in the United States. Entitled An Act to Encourage Vaccination, it created a National Vaccine Agency and made the shipping of vaccine materials through the U.S. postal service free, so all Americans could benefit no matter where they lived or what their circumstances.

For nearly another century, smallpox remained the only disease for which a vaccine existed. As scientists researched vaccines for other diseases, they came to understand “community immunity” (also called “herd immunity”)—the effect that immunizing many members of a community has in protecting others who lack immunity. Citizens and policy makers, meanwhile, wrangled over science-informed initiatives in order to strike an acceptable balance between improvement in public health and protection of individual civil liberties. In 1855, for example, vigorous debate attended Boston’s passage of the first law in the United States requiring children to be vaccinated before they could attend public school.

Today, vaccines are available to protect the public from more diseases than ever before. Although our scientific knowledge about vaccines has increased vastly since the nation’s earliest days, some Americans now question the science supporting the safety and effectiveness of vaccines—which is ironic given the fact that vaccines have eliminated or nearly eliminated some of the most serious diseases our ancestors suffered. Some also question whether government-mandated vaccines serve the interests of both public health and personal freedom. For these reasons, current U.S. vaccine policies should be understood and discussed within the proper historical context. If we choose to ignore or reject the centuries of scientific evidence and science-based policies supporting vaccination, we risk reversing many of the hard-won gains we have made over disease in the past.

“Every friend of humanity must look with pleasure on this discovery, by which one evil more is withdrawn from the condition of man. . . . I know of no one discovery in medicine equally valuable.”

—THOMAS JEFFERSON
REFERENCES

Franklin, B. 1759. Some account of the success of inoculation for the small-pox in England and America; together with plain instructions by which any persons may be enabled to perform the operation and conduct the patient through the distemper. London: W. Straham.

