Climate 2030
A NATIONAL BLUEPRINT FOR A CLEAN ENERGY ECONOMY

Rachel Cleetus
Steven Clemmer
David Friedman

Union of Concerned Scientists
Citizens and Scientists for Environmental Solutions

MAY 2009
Rachel Cleetus is an economist with the Union of Concerned Scientists Climate Program.
Steven Clemmer is the research director of the Union of Concerned Scientists Clean Energy Program.
David Friedman is the research director of the Union of Concerned Scientists Clean Vehicles Program.

The Union of Concerned Scientists (UCS) is the leading science-based nonprofit working for a healthy environment and a safer world.

More information about the Union of Concerned Scientists is available on the UCS website at www.ucsusa.org.

The full text of this report and additional technical appendices are available on the UCS website (www.ucsusa.org/blueprint) or may be obtained from:

UCS Publications
2 Brattle Square
Cambridge, MA 02238-9105

Or, email pubs@ucsusa.org or call (617) 547-5552.

Designed by:
DG Communications, Acton, MA
www.NonprofitDesign.com

Printed on recycled paper.
Table of Contents

Table of Contents iii
Acknowledgments viii

EXECUTIVE SUMMARY 1

CHAPTER 1
A Vision of a Clean Energy Economy and a Climate-Friendly Future 13
1.1. The Climate 2030 Approach 13
1.2. Building on Previous Studies 14
1.3. A Clean Energy Economy: A Solution for Many Challenges 15
1.4. Setting a Target for U.S. Emissions Cuts 15
1.5. 2020 Targets: The Importance of Near-Term Goals 18

CHAPTER 2
Our Approach 21
2.1. Our Model 21
2.2. The Reference Case 22
2.3. The Climate 2030 Blueprint Case 22
2.4. The Blueprint Cap on Global Warming Emissions 23
2.5. The Blueprint Analysis of Energy Efficiency 25
2.6. The Blueprint Analysis of the Biomass Supply Curve 25
2.7. The Bottom Line 26
2.8. Summary of Blueprint Assumptions 26

CHAPTER 3
Putting a Price on Global Warming Emissions 35
3.1. How a Well-Designed Cap-and-Trade Program Works 35
3.2. A Tried-and-Tested Approach 36
3.3. Design for Success 37

CHAPTER 4
Where We Work, Live, and Play: Technology for Highly Efficient Industry and Buildings 45
4.1. Energy Efficiency Opportunities in Industry 45
4.2. Energy Efficiency Opportunities in Residential and Commercial Buildings 46
FIGURES, TABLES, AND BOXES

Figures
ES.1. The Sources of U.S. Heat-Trapping Emissions in 2005 1
ES.2. Net Cuts in Global Warming Emissions under the Climate 2030 Blueprint 3
ES.3. Net Consumer and Business Savings (by Census Region in 2030, in 2006 dollars) 4
ES.5. The Source of Cuts in Global Warming Emissions in 2030 (Blueprint case vs. Reference case) 7
ES.6. The Source of Savings in 2030 (Blueprint case vs. Reference case) 8
1.2. The Risks of Climate Change: The “Burning Embers” Diagram 17
2.1. National Energy Modeling System (NEMS) 21
2.2. U.S. Emissions Cuts under the Blueprint Cap 23
4.1. Residential and Commercial Energy Use 47
4.2. Efficiency Helps Meet U.S. Energy Demand 50
4.3. The Energy Savings and Costs of Efficiency Programs 51
5.2. Installed Wind Power Capacity (2009) 65
5.3. The Potential of Concentrating Solar Power 71
5.4. How Enhanced Geothermal Systems Work 72
5.5. Geothermal Potential 73
5.6. Bioenergy Potential 74
5.7. Declining Cost of Renewable Electricity (levelized cost of electricity, in cents per kilowatt-hour) 76
5.8. Cost of Electricity from Various Sources (2015) (levelized cost of electricity, in 2006 dollars per megawatt-hour) 77
5.9. How Carbon Capture and Storage Works 84
5.10. Nuclear Power Plant Construction Costs Rising Faster than Other Technologies 88
6.1. The Sources of Transportation Heat-Trapping Emissions (2005) 93
6.2. Fuel Economy Potential for Cars, Minivans, SUVs, and Pickups 95
6.3. Petroleum Use in Transportation (2005) 103
7.1. Net Cuts in Global Warming Emissions under the Climate 2030 Blueprint 125
7.2. The Source of Cuts in Global Warming Emissions in 2030 (Blueprint case vs. Reference case) 128
7.3. The Source of Savings in 2030 (Blueprint case vs. Reference case) 130
7.4. Net Consumer and Business Savings (by Census Region in 2030, in 2006 dollars) 131
7.5. Demand for Petroleum Products 133
7.6. Bioenergy Use (Blueprint case vs. Reference case) 134
7.7. Actual Emissions Compared with Cap Emissions (Blueprint results vs. model input, 2000–2030) 135
7.8. Prices of Carbon Allowances and Offsets under the Climate 2030 Blueprint 136
7.9. Carbon Dioxide Emissions from Power Plants 137
7.10. Sources of Electricity (Reference case vs. Blueprint case) 138
7.11. Blueprint Renewable Electricity Mix (2030) 139
7.12. Transportation Carbon Emissions (Reference case vs. Blueprint case) 147
7.13. Changes in Transportation Carbon Emissions (Reference case) 147

Tables
v
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success Story: The Little Country that Could</td>
<td>66</td>
</tr>
<tr>
<td>Success Story: Surprises in the Desert</td>
<td>70</td>
</tr>
<tr>
<td>Technologies on the Horizon: Renewable Energy</td>
<td>78</td>
</tr>
<tr>
<td>Key Assumptions for Technologies Used to Produce Electricity</td>
<td>90</td>
</tr>
<tr>
<td>Key Assumptions for Electricity Policies</td>
<td>91</td>
</tr>
<tr>
<td>The Advantages of Regulating Vehicle Emissions versus Fuel Economy</td>
<td>100</td>
</tr>
<tr>
<td>Promising Policies the Blueprint Case Did Not Include</td>
<td>102</td>
</tr>
<tr>
<td>Success Story: Jump-Starting Tomorrow’s Biofuels</td>
<td>108</td>
</tr>
<tr>
<td>Success Story: It Takes an Urban Village to Reduce Carbon Emissions</td>
<td>118</td>
</tr>
<tr>
<td>Technologies and Other Options on the Horizon: Transportation</td>
<td>122</td>
</tr>
<tr>
<td>Climate 2030 Blueprint Policies</td>
<td>126</td>
</tr>
<tr>
<td>Public Health and Environmental Benefits of Reduced Coal Use</td>
<td>140</td>
</tr>
<tr>
<td>The Perfect Storm of Climate, Energy, and Water</td>
<td>142</td>
</tr>
<tr>
<td>Success Story: Some Good News in Hard Times</td>
<td>144</td>
</tr>
<tr>
<td>Success Story: The Early Feats and Promising Future of Hybrid-Electric Vehicles</td>
<td>152</td>
</tr>
<tr>
<td>Impact of the Blueprint Policies in 2020</td>
<td>155</td>
</tr>
<tr>
<td>Success Story: Farmers and Fungi: Climate Change Heroes at the Rodale Institute</td>
<td>169</td>
</tr>
<tr>
<td>How We Can Cut Emissions More than One-Third by 2020</td>
<td>173</td>
</tr>
<tr>
<td>How It Works: REDD</td>
<td>179</td>
</tr>
</tbody>
</table>
Acknowledgments


For independent expert review of the report, the authors thank Frank Ackerman (Stockholm Environment Institute–U.S. Center), Jeff Alson (U.S. Environmental Protection Agency), Doug Arent (National Renewable Energy Laboratory), Lynn Billman (National Renewable Energy Laboratory), Peter Bradford (Vermont Law School), John Byrne (Center for Energy and Environmental Policy, University of Delaware), Duncan Callaway (Center for Sustainable Systems, University of Michigan), Elizabeth Doris (National Renewable Energy Laboratory), Paul R. Epstein (Center for Health and the Global Environment, Harvard Medical School), John German (International Council on Clean Transportation), Jeffery Greenblatt (Google.org), Christopher A. James (Synapse Energy Economics), Erin Kassoy (The Alliance for Climate Protection), David Kline (National Renewable Energy Laboratory), Chuck Kutscher (National Renewable Energy Laboratory), Daniel A. Lashof (Natural Resources Defense Council), Brenda Lin (American Association for the Advancement of Science), Thomas R. Mancini (Sandia National Laboratories), Jason Mark (The Energy Foundation), William Moomaw (Fletcher School, Tufts University), Dean M. Murphy, Brian Murray (Nicholas Institute, Duke University), Gregory Nemet (University of Wisconsin–Madison), Joan Ogden (University of California–Davis), Steven E. Plotkin (Argonne National Lab), William H. Schlesinger (Cary Institute of Ecosystem Studies), Monisha Shah (National Renewable Energy Laboratory), Daniel Sperling (University of California–Davis), Laura Vimmerstedt (National Renewable Energy Laboratory), and Michael P. Walsh (international consultant).

We also thank Marilyn A. Brown (Georgia Institute of Technology), Ryan Wiser (Lawrence Berkeley National Laboratory), and several anonymous independent experts for their thoughtful comments during a preliminary presentation of our results.

Organizational affiliations are listed for identification purposes only.
The opinions expressed in this report are solely the responsibility of the authors.
Modeling support was provided by OnLocation, Inc. John “Skip” Laitner and others at the American Council for an Energy-Efficient Economy provided an analysis of the impact of greater energy efficiency in industry and buildings. Marie Walsh at the University of Tennessee provided an analysis of biomass potential. We also thank Nora Greenglass and Richard A. Houghton (Woods Hole Research Center) and Steven Rose (Global Climate Change Research Group, Electric Power Research Institute) for providing expertise in the agriculture and forestry sectors.

This report is the result of years of dedication from a large interdisciplinary team at UCS. The authors thank the combined leadership of Nancy Cole, Peter Frumhoff, Kevin Knobloch, Alden Meyer, Alan Nogee, Lance Pierce, Kathleen Rest, Michelle Robinson, Suzanne Shaw, and Lexi Shultz. Several other UCS experts provided analytic and technical support throughout the process, including but not limited to Don Anair, Doug Boucher, Brenda Ekwurzel, Melanie Fitzpatrick, Kristen Graf, Jeremy Martin, Margaret Mellon, Patricia Monahan, and John Rogers. We wish to give a special thanks to energy analysts Jeff Deyette and Sandra Sattler for their significant analytic support, technical contributions, and constant troubleshooting. Policy expertise, guidance, and additional contributions were provided by Kate Abend, Ron Burke, Christopher Busch, Cliff Chen, Barbara Freese, Eli Hopson, Aaron Huertas, Jim Kliesch, Rouwenna Lamm, Ben Larson, Claudio Martinez, Lena Moffitt, Scott Nathanson, Lisa Nurnberger, Liz Martin Perera, Spencer Quong, Ned Raynolds, Emily Robinson, Erin Rogers, Jean Sideris, Ellen Vancko, Marchant Wentworth, Laura Wisland, and former UCS vehicles engineer Don MacKenzie.

Bryan Wadsworth and Heather Tuttle helped to coordinate the production process, and we thank Sandra Hackman for her tremendous editing work within a tight time frame, and David Gerratt of DG Communications for his design of the report.

Thank you to Julie Ringer for her administrative and production assistance, and to Eric Misbach for his support and assistance to Rachel Cleetus and the UCS leadership in managing this complex project.