FACT SHEET
THE U.S. NUCLEAR WEAPONS COMPLEX

The Nevada National Security Site (NNSS) is where the United States carried out most of its explosive tests of nuclear weapons (the vast majority of them underground). When the United States signed the Threshold Test Ban Treaty in 1974, it became the only U.S. nuclear weapons test site. Originally known as the Nevada Proving Grounds, and then as the Nevada Test Site, the facility was renamed in 2010 when its mission was expanded to encompass a broader range of activities related to nuclear weapons, energy, and homeland security needs.

The NNSS is located in the desert, about 75 miles northwest of Las Vegas. The site itself covers more than 1,300 square miles and is surrounded by the federally owned Nevada Test and Training Range that acts as a buffer, giving a total unpopulated area of more than 5,400 square miles—nearly the size of the state of Connecticut. Its remote location and large size were important factors in its selection as a testing site.

Like the other sites in the nuclear weapons complex, the NNSS is overseen by the National Nuclear Security Administration (NNSA), a semi-autonomous agency within the Department of Energy (DOE).

The NNSS Today

With the end of the cold war and the 1992 moratorium on nuclear explosive testing, the NNSS’s primary mission shifted from the explosive testing of nuclear weapons to maintaining the safety, security, and reliability of the existing U.S. nuclear stockpile without such testing. (Under a 1993 presidential decision...
The NNSS is still a major test site for the U.S. nuclear complex, but the tests that take place there no longer involve nuclear explosions.

In addition to its tasks supporting the Stockpile Stewardship Program, the NNSS also provides a testing site to evaluate detection, monitoring, and verification technologies used in nuclear nonproliferation and arms control applications, and helps manage the nation’s nuclear emergency response efforts. Other federal agency activities are supported by the NNSS as well, such as remote imaging and training first responders to deal with nuclear or radiological emergencies.

The NNSS is operated by National Security Technologies, LLC, which is a partnership of Northrop Grumman, AECOM, CH2M Hill, and Nuclear Fuel Services. The site employs roughly 1,900 scientific, technical, engineering, and administrative personnel.

Budget

The NNSS’s total FY 2013 funding from the DOE is $383 million. Of this, the majority—$257 million—came from the NNSA for weapons activities, with an additional $67 million in NNSA funding for defense nuclear nonproliferation.

In FY 2014 the NNSS has requested a total of $396 million in funding, with $244 million of this for weapons activities. The NNSS also requested $110 million for defense nuclear nonproliferation in FY 2014. The jump in the funding request for nonproliferation and drop in that for weapons activities reflect a change in the NNSA’s organization of the FY 2014 budget, not a significant change in funding.

directive, the site must maintain a state of readiness to resume nuclear explosive testing within two to three years if the president directs it to do so.)
Current Issues

PLUTONIUM STORAGE

In 2012, the Obama administration decided to defer for five years the construction of a proposed Chemistry and Metallurgy Research Replacement-Nuclear Facility (CMRR-NF) at Los Alamos National Laboratory, which was planned in part to provide additional storage space for plutonium at the lab. This raised concerns that an alternative storage site may be required. However, in its FY 2013 budget release, the administration noted that excess plutonium could be stored at the DAF, which has considerable unused space (one DOE study estimated that the DAF could hold up to 8,000 pits). Since the DAF was designed to house nuclear materials, it has the safety and security features required to store plutonium.

WEAPONS DISASSEMBLY

The DAF is one of only two locations in the U.S. nuclear weapons complex (along with Pantex Plant in Texas) with the necessary facilities for full assembly and disassembly of nuclear weapons—in particular, for mating or unmating the plutonium pits with the high explosives that surround them. The DAF was originally intended to assemble weapons to be used in underground tests, but that role disappeared with the end of the cold war and the testing moratorium. It is now used to assemble devices for subcritical experiments and other activities involving high explosives and special nuclear materials.

The NNSA has suggested that the DAF’s unique capabilities could make it a suitable backup facility to Pantex Plant, which is the primary site in the U.S. nuclear weapons complex for the assembly and disassembly of nuclear weapons. The DAF could also be used along with Pantex to speed up the dismantlement of retired weapons. Pantex’s dismantlement rate has slowed recently because it requires use of the same facilities as life extension programs (LEPs), which replace nuclear weapons components affected by aging with newly manufactured components. The NNSA's greater emphasis on LEPs over the past several years means less space is available for dismantlement, creating a backlog that some experts have suggested the DAF could help clear.